Portable gamma ray spectrometer - a short introduction

István Dunkl

http://www.sediment.uni-goettingen.de/staff/dunkl

Focus:

units of radioctivity, principle of measurement,

case studies

methodology, demo of GR-135

exploration of K and U - outlook of atomic power

Dimensions

Becquerel (Bq = 1 decay per second)

Curie (Ci = 3.7×10^{10} decays per second)

Gray (Gy = J/Kg) (adsorbed radiation dose)
Sievert (1 Sv = J/Kg) = 100 Rem (roentgen equivalent in man)

total gamma ray count for the NGS can be approximated by the simple formula

$$GR(API) = 4 \cdot Th(ppm) + 8 \cdot U(ppm) + 16 \cdot K(\%)$$

$$(2.7.5)$$

Therefore, the compensated gamma ray CGR is calculated as

$$CGR(API) = 4 \cdot Th(ppm) + 16 \cdot K(\%)$$
(2.7.6)

[Luthi (2001) Geological well logs]

Principle

All rocks and soils are naturally radioactive, & contain various proportions of a variety of radioactive elements.

The natural decay of these elements produces a variety of types of radiation (alpha, beta, gamma) at specific energy levels.

Only gamma ray radiation has sufficient energy to be useful for geological mapping or exploration. (penetration)

Portable gamma spectrometer has good resolution of the gamma photon energies in the 0.3 to 3 MeV range.

Meteorological conditions, humidity Topography of the survey area Cosmic-ray background Height of the sensor above ground Speed of data acquisition Data processing

István: Geometry, geometry & geometry !!!

Typical U, Th and K concentrations

		TT1 (1 1 1)	TZ C 1 1 1 0/
Mineral	U-Gehalt in ppm	Th-Gehalt in ppm	K-Gehalt in %
Montmorillonit	25	1424	0 4.9
Chlorit		35	0 0.35
Kaolinit	1.5 9	642	0 0.6
Illit	1.5	10 25	3.5 8.3
Glaukonit		< 10	3.2 5.8
Bentonit	1036	4 55	
Hornblende	1 30	550	< 0.5
Biotit	1 40	0.5 50	6.2 10.1
Muskovit	2 8	10 25	7.9 9.8
Mikroklin			10.9
Orthoklas			11.8 14
Plagioklas	0.2 5	0.5 3	
Sylvinit			52.4
Carnallit			15.1
Polyhalit			14.1
Monazit	500 3000	25000 200000	13.4
Zirkon	300 3000	100 2500	

[Hentschke]

Th / K ratio of some minerals & rocks

[Widijanto, 2006]

Uranium

continental rocks: 2-4 ppm

mafic rocks: < 1 ppm

sediments: 5-10 ppm

soils are usually depleted

ocean water: 3.3 ppb

Aqueous mobility by Uranyl: U adsorption on organic matter, clays, zeolites, FeOOH

Figure 3.35 Eh–pH diagram showing relevant aqueous uranium species for the conditions specified. For most meteoric waters in the near neutral pH range, the dominant aqueous species are likely to be U⁶⁺-oxide or -carbonate complexes. These will be precipitated from solution by a reduction of Eh to form U⁴⁺-oxide, or uraninite (after Langmuir, 1978).

[Robb, 2005]

Facies analysis by gamma log

[Gross et al., 2000]

[[]Gross, Reisinger, Hubmann, 2000]

Well log

[Fertl & Chillingar, 1988]

[USGS]

Soultz geothermal experiment (fracture connectivity)

Figure. 5. Cross-plots A) Uranium (HURA ppm) – Potassium (HFK %) and B) Thorium (HTHO ppm) – Potassium (HFK %). Sizes of the dots are proportional to fracture conductivities. Red squares shows the Potassium ranges where high fracture conductivities are observed.

[Sausse et al., 2008]

Geochemical interpretation of the results of measuring gamma-radiation of Mars

Yu. A. Surkov, L. P. Moskalyova, O. S. Manvelyan, A. T. Basilevsky, and V. P. Kharyukova

[Surkov, 1980]

Techniques

Major techniques for detection of ionizing irradiation

Gas ionisation detectors

Ion chambers Proportional counter Geiger-Müller tube

Scintillacion counter

Solid state detectors

TL Termoluminescent dosimetry LiF: Mg, Ti CaSO₄: Dy (TC thermal current) CaF₂: Mn oven (TSEE thermally stimulated exoelectron emission) BeO : Li RFL Radio-fotoluminescent dosimetry Ag in glass UV Film dosimetry AgBr, AgI (from 0.4 mGy up) shielded parly by plastic, Cu 0.06 mm, 0.5 mm, Cd 1mm, Pb 1mm..... Track detectors alpha-sensitive plastic foils

Thallium activated Nal

VS.

Csl

Size of the Nal crystal

Detector efficiency: cps/Bq

Number of channels

Detector resolution: full width at half maximum (FWHM)

Half-lifes of the U decay chain

[IAEA]

Gamma ray spectra

[Luthi (2001) Geological well logs]

U_e and Th_e

K concentration is measured directly, U & Th indirectly from measurements of daughter products, hence the use of the term **equivalent**

[SXR Corp.]

What to do with the spectrum?

Classic analysis uising windows for K, U, Th

Full Spectrum Analysis (FSA) incorporates virtually all of the data present in the measured gamma spectrum

Figure 3. FSA analysis of a natural gamma spectrum. The measured spectrum (black dots) is approximated by a fitted curve (yellow). The green ,blue and red curves are the Standard Spectra for K, U and Th respectively.

[Koomans et al., 2007]

What to do with the spectrum?

Figure 4. The relative uncertainty in the activity concentrations of ²³²Th spectra analysed according to the full-spectrum analysis (triangles) and traditional windows analysis (squares) as a function of counts in the spectrum [taken from hendriks].

2.2 CONNECTIONS – BATTERY COMPARTMENT

[SAIC manual]

Menu structure of GR-135

The most important screens (on-line evaluation)

ASSAY			ASSAY		
тот	ррм 0.2	cpm 322	RANGE 0-3072KEU		
K U Th	0.1% 1.2 4.9	71 71 10	Huy I		
SPECT	RUM STORE	DAS#1 F V SRCH	DETECTOR NAI D.TIME 62 NEUT CURSOR 66 KEU ROI NO 1 4 TIME 21 5 SET		

LIBRARY					
CUSTOMS U -235 Pu-239 Th-232 Ga-67 Co-60 Ba-133 Ir -192 Pm-241	LIBRARY U -233 Ra-226 K -40 Cs-137 I -131 T1-201 Tc-99m Xe-133				
ENTER TO	GET MORE				

3 CTS 25 CTS 400 CTS

MEAS US 64

[SAIC manual]

Off – line evaluation

[SAIC

manual]

Off – line evaluation

[SAIC manual]

Demonstration: distinction of dolomite from soil-covered dolomite during field work

Demonstration: ,,indoor field-work"

Economy, prospection

[infomine.com]

Potash grade with gamma-ray logs

[Nelson, 2007]

Monazite (~10 % ThO2), Zircon (500-1500 ppmU) expanding REE market

U exploration

[infomine.com]

Uranium production & requirements !!!

Figure 12. Annual Uranium Production and Requirements (1945-2004)

[IAEA, 2005]

Nuclear Electricity Generation 2007

[WNA]

World Nuclear Association

Future 1

[Campbell and Campbell, 2005]

Future 2

Estimates of 21st Century World Energy Supplies: Billion Barrels Oil Equivalent: Alternate Universe

[Campbell and Campbell, 2005]

WNA NUCLEAR CENTURY OUTLOOK								
MAJOR NUCLEAR PROGRAMMES*	2008	2030 Low	2030 High	2060 Low	2060 High	2100 Low	2100 High	
Units - 1GWe								
Belarus	0	2	5	5	8	5	10	
Belgium	6	6	8	8	10	8	22	
Brazil	2	10	30	40	100	70	330	
Bulgaria	2	4	7	5	7	5	7	
Canada	13	20	30	25	40	30	85	
China	9	35	100	150	750	500	2800	
Czech Republic	3	5	7	5	12	5	15	
Finland	3	5	7	8	10	8	11	
France	63	65	75	80	110	80	130	
Germany	20	20	50	40	80	80	175	
Hungary	2	4	5	4	8	5	12	
India	4	20	70	60	350	200	2750	
Japan	48	55	70	80	140	80	200	
Lithuania/ Latvia/ Estonia	1	4	6	5	8	5	8	
Netherlands	1	1	5	7	20	10	35	
Romania	1	4	10	5	20	10	25	
Russia	22	30	70	75	180	100	200	
Slovakia	2	3	4	4	5	5	7	
Slovenia	1	1	1	1	2	1	2	
South Korea (and North Korea)	18	25	50	45	80	70	145	
Spain	7	8	20	20	50	25	60	
Sweden	9	10	15	10	18	10	18	

Summary

Easy usage, good reproducibility

Quick U-Th-K assay (equivalent is measured!)

- **But!:** Detection geometry
 - Background extraction
 - Topography and 'micro-topography'

Nuclid identification

Fields of usage

Mapping, logging profiles (planetology ;-) Correlation, facies analysis Radioactive heat production ESR, TL, OSL dating U and placer prospection Evaluation of potash grade

NOT for dosimetry