Tectonothermal history of the Holy Cross Mountains (Poland) in the light of low-temperature thermochronology

Dariusz Botor1 | Aneta A. Anczkiewicz2 | István Dunkl3 | Jan Golonka1 | Mariusz Paszkowski2 | Stanisław Mazur2

1Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland
2Institute of Geological Sciences, Polish Academy of Sciences, Kraków, Poland
3Sedimentology and Environmental Geology, Geoscience Center, University of Göttingen, Göttingen, Germany

Correspondence
Dariusz Botor, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland. Email: botor@agh.edu.pl

Funding information
Polish National Centre for Research and Development (NCRD) under the Blue Gas – Polish Shale Gas Program, Grant/Award Number: BG1/GAZGEOLMOD/13, 17.17.866660; National Science Centre, Grant/Award Number: UMO-2012/05/B/ST10/00521

Abstract
The low-temperature thermal history of the Holy Cross Mountains (HCM) is investigated by apatite fission track and apatite and zircon (U–Th)/He thermochronology. Our results provide constraints on the deformation history of Palaeozoic basement rocks in the transition area from Precambrian to Palaeozoic Europe that are exposed from beneath Permian–Mesozoic sediments within the HCM. Late to post-Variscan cooling of the Palaeozoic strata from maximum temperatures is shown to be a major feature of the HCM. This cooling likely followed a heating event related to burial and/or hot fluid circulation along the Holy Cross Fault in the late Carboniferous. The central part of the HCM shows a rapid cooling event caused by tectonic inversion, which started in the Late Cretaceous. However, this event was less pronounced in the western margin of the HCM, where slow cooling continued throughout the Mesozoic with only minor acceleration of the cooling rate since the latest Cretaceous.

1 | INTRODUCTION

The Holy Cross Mountains (HCM) are a solitary massif built of polydeformed Cambrian–Carboniferous sediments (Figure 1) that were exhumed from beneath a Permian–Mesozoic cover during Late Cretaceous–Palaeocene inversion of the Polish Basin (Krzywiec, 2009; Krzywiec, Gutowski, Walaszczyk, Wróbel, & Wybraniec, 2009; Lamarche, Lewandowski, Mansy, & Szulczewski, 2003; Lamarche et al., 1999; Lamarche, Scheck, et al., 2003; Mazur, Scheck-Wenderoth, & Krzywiec, 2005; Scheck-Wenderoth, Krzywiec, Züike, Maystrenko, & Frizheim, 2008). This massif provides a unique insight into the tectonic history of the pre-Permian basement that underlies the Polish Basin next to the Teisseyre–Tornquist Zone and the margin of the Precambrian East European Platform (Figure 1; e.g. Berthelsen, 1992; Dadlez, Kowalczyk, & Znosko, 1994; Lamarche et al., 1999; Nawrocki et al., 2007). The Palaeozoic massif of the HCM emerges on both sides of the boundary between the Lysogóry and Małopolska Blocks, separated by the Holy Cross Fault (HCF; Figure 1).

The Palaeozoic and Mesozoic thermal history of the HCM was controlled by intervening episodes of subsidence, burial and inversion, but is still not sufficiently understood. There is no consensus on the tectonothermal evolution of the HCM and several contradicting models have been proposed. Most authors (Belka, 1990; Marynowski, 1997, 1999; Marynowski, Salamon, & Narkiewicz, 2002; Naglik, Tobola, Natkaniec-Nowak, Uptáková, & Milovská, 2016; Narkiewicz, 2017; Narkiewicz, Resak, Littke, & Marynowski, 2010; Smolarek, Marynowski, Spunda, & Trela, 2014) argue for an elevated Variscan (late Carboniferous to early Permian) heat flow, which significantly exceeded the current low values (Szewczyk & Gientka, 2009). However, Poprawa, Żywiecki, and Grotek (2005) proposed that thermal maturity of organic matter in the Devonian to Jurassic sedimentary successions was achieved during Late Jurassic or Late Cretaceous burial that was characterized by constant heat flow equal...
to the recent one (Szewczyk & Gientka, 2009). They concluded that no elevated Variscan heat flow was necessary to explain the observed maturity in the Palaeozoic formations. Schito et al. (2017) presented burial and thermal history models, assuming very low constant heat flow during the Palaeozoic to Jurassic that subsequently increased up to the present-day values from the Early Cretaceous onwards with maximum palaeotemperatures reached in the Late Cretaceous. Most authors agree about a key role of the HCF in controlling the Variscan thermal regime within the region (Belka, 1990; Marynowski, 1999; Poprawa et al., 2005) and enhancing Carboniferous–Permian advective heat flow by fluid migration (Naglik et al., 2016; Narkiewicz et al., 2010; Poprawa et al., 2005). In the HCM, burial and exhumation events of different magnitudes can be related to the HCF polyphase activity. Particularly, Variscan deformation of the late Carboniferous (e.g. Lamarche, Lewandowski, et al., 2003; Narkiewicz, 2007) was potentially capable of generating a tectonic overburden which might have caused a temperature increase and affected thermal maturity of organic matter.

The aim of our study was to reveal for the first time the thermal history of the HCM in the temperature range below 200°C by applying apatite fission track (AFT) and apatite and zircon (U–Th)/He dating techniques.

2 | GEOLOGICAL SETTING

Lower Cambrian–lower Carboniferous sediments form the Palaeozoic massif of the HCM that is discordantly covered by upper Permian–Upper Cretaceous sediments forming a margin in the N, W and SW of the Palaeozoic core. The core and its margin are jointly overlain by a transgressive Miocene fill of the Carpathian foredeep basin that covers the Palaeozoic inlier of the HCM from the S and SE (Figure 1). The structure of the HCM was shaped by several episodes of tectonic shortening in the late Cambrian, latest Silurian–earliest Devonian (Caledonian), late Carboniferous (Variscan) and Late Cretaceous–Palaeocene (Alpine) interrupted by long periods of basin-forming subidence (e.g. Czarnocki, 1919; Gągala, 2015; Konon, 2006, 2007; Kowalczewski, Jaworowski, & Kuleta, 1998; Kutek & Glazek, 1972; Lamarche, Lewandowski, et al., 2003; Lamarche et al., 1999; Lamarche, Scheck, et al., 2003; Szaniawski, Konon, Grabowski, & Schnabl, 2011; Znosko, 1996).

The stratigraphy of the Palaeozoic core of the HCM shows similarities to both the East European Platform in the north and the Małopolska Block in the south. The part of the HCM north of the HCF, referred to as the Lysogóra Region after Czarnocki (1936) (Figures 1 and 2), contains a ~7 km thick, nearly continuous middle Cambrian–Upper Devonian stratigraphic section (e.g. Jaworowski & Sikorska, 2006; Kozłowski, 2003). The part S of the HCF, known as the Kielce Region (Figure 1; Czarnocki, 1936), includes a thinner and less complete lower Cambrian–lower Carboniferous stratigraphic section (Figure 2; e.g. Modliński & Szymański, 2001; Nawrocki et al., 2007; Szulczewski, 1995). The HCF, separating the Lysogóra and Kielce Regions, was variously interpreted as a flower structure (Lamarche, Lewandowski, et al., 2003), a strike-slip duplex (Mastella & Mizerski, 2002), a series of vertical-axis rotated blocks (Konon, 2007) or a thin-skinned thrust (Czarnocki, 1919, 1950; Gągala, 2015; Stupnicka, 1988, 1992).

Variscan deformation of the HCM is manifested by the occurrence of Carboniferous folds and thrusts (e.g. Konon, 2006; Lamarche, Lewandowski, et al., 2003; Mizerski, 2004) as well as the presence of a thin-skinned fold-and-thrust belt encroaching onto the East European Craton directly SE of the HCM (Krzywiec, Gągala, et al., 2017; Krzywiec, Mazur, et al., 2017). The kinematic mechanism of the Variscan folding inside the HCM was interpreted as a multi-detachment buckling by Konon (2006), who proposed several décollements dispersed throughout the Palaeozoic strata. After Variscan shortening and inversion, revealed by a major base-Permian unconformity (e.g. Lamarche, Lewandowski, et al., 2003; Narkiewicz et al., 2010), the HCM underwent a prolonged Mesozoic subsidence as part of the Polish Basin floor (e.g. Dadlez, Narkiewicz, Stephen-son, Visser, & Van Wees, 1995; Kutek, 2001; Kutek & Glazek, 1972; Lamarche, Lewandowski, et al., 2003; Narkiewicz et al., 2010). The eastern and central parts of the HCM were located in the axial zone of the Mid-Polish Trough representing a main Permian–Mesozoic depocentre (e.g. Dadlez et al., 1995; Kutek, 2001; Kutek & Glazek, 1972; Lamarche, Lewandowski, et al., 2003). The HCM were exhumed from beneath a Permian–Mesozoic cover during the Late Cretaceous–Palaeocene Alpine inversion of the Polish Basin, when the Mid-Polish Trough was inverted into the Mid-Polish Swell with its axis ascending SE-ward (Krzywiec, 2002; Krzywiec et al., 2009; Lamarche, Lewandowski, et al., 2003; Lamarche, Scheck, et al., 2003; Mazur et al., 2005; Scheck-Wenderoth et al., 2008).

3 | SAMPLES AND METHODS

Lower Ordovician to lower Carboniferous sandstone and bentonite samples were collected from surface outcrops in the HCM. We applied three low-temperature thermochronology methods: AFT, (U–Th)/He on zircon (ZHe) and apatite (AHe). Thermal histories were
Deformation ?

BOTOR ET AL.

Robert, Ogg, and Hilgen (2012) throughout the text.

RESULTS

ZHe dating results for 14 samples are listed in Tables 1 and SI 1. A few grains yielded ages that are statistical outliers, probably due to submicroscopic inclusions or other imperfections. These grains were excluded from the calculation of mean ZHe ages. In the Lysogóry Region, the Silurian and Devonian samples gave mean ages between 325 and 283 Ma (Figure 1). Sample SW1, however, is distinctly older (744 Ma) than its depositional age and represents preserved provenances signal. All other ZHe ages are younger than the stratigraphic age and thus considered totally reset and representing Variscan cooling ages. In the Kielce Region, Ordovician and Silurian samples have ZHe ages from 417 to 407 Ma, with one younger age of 374 Ma (P1). These ages are thought to be partially reset during a Variscan heating event. The ZHe age of sample KK1 (315 Ma) is thought to be entirely reset since all the single grain ages are younger than their stratigraphic age and narrowly clustered. However, the Viséan OST sample has a mean ZHe age of 294 Ma, based on three single grain ages which scatter from 352 to 256 Ma, suggesting no full reset (Tables 1 and SI 1).

AFT ages for four samples are significantly younger than the stratigraphic age (Tables 1 and SI 2). Mean track lengths range from 12.6 to 14.1 μm, and track length distributions are unimodal with relatively narrow standard deviations (1.2–1.8 μm; Figure 1; Table SI 2). The samples are considered to have undergone full annealing. Mean Dpars range between 2.4 and 3.0 μm, indicating increased annealing resistance with respect to fluorapatite (Donelick, O’ Sullivan, & Ketcham, 2005; Ketcham et al., 2007a, 2007b). In the Lysogóry Region, sample P2 gave a Cretaceous cooling age (109 Ma), while three samples (P1, OST and KK1) in the Kielce Region yielded ages of 88, 168 and 202 Ma.

Samples DE2 (Lysogóry Region) and KK1 (Kielce Region) yielded apatite crystals suitable for AHe thermochronology with average AHe ages of 91 Ma and 43 Ma respectively (Tables 1 and SI 3). These ages show continued Cretaceous and Palaeogene cooling.

Thermal histories were modelled for samples KK1, P1 and P2 (in combination with the AHe age of DE2 from the same locality). The objectives of the modelling were (1) to indirectly estimate maximum temperatures in the late Palaeozoic that can be approximated by the ZHe data and (2) to constrain the cooling path by ZHe, AFT and AHe data. The starting point of the time-temperature (t–T) path for the studied samples was set at T = 25–20°C in the time interval that corresponds to the range of the stratigraphic ages.

A late Palaeozoic Variscan heating event occurred with maximum temperatures reaching c. 130 and 180°C in the Kielce and Lysogóry Regions respectively (Figure 3). Post-Variscan cooling followed shortly after and resulted in exhumation of the sediments into the AFT annealing zone by the late Permian. The models for samples P2/DE2 and P1 show a gradual temperature increase up to 120°C in the Mesozoic and a thermal plateau at 100–110°C respectively (Figure 3). In contrast, thermal modelling for sample KK1, from the western Kielce Region, proposes ongoing cooling throughout the Mesozoic with only minor acceleration in the Late Cretaceous (Figure 3a). The other thermal modelling suggests rapid exhumation in the Late Cretaceous, but reduced cooling in the Cenozoic (Figure 3b, c). For modelling details, see the Supporting Information.

DISCUSSION

The modelling results are consistent with the assumption of moderate to elevated Variscan heat flow on both sides of the HCF. The whole Cambrian–lower Carboniferous succession was heated in the Carboniferous and subsequent cooling commenced in the latest Carboniferous and endured into the Permian. Previous studies showed that the maturity of Devonian and lower Carboniferous rocks

FIGURE 2 Synthetic stratigraphic columns of the Palaeozoic for the Kielce and Lysogóry Regions of the Holy Cross Mountains (compiled from various sources including Czarnocki, 1950; Kozłowski, 2008; Kozłowski, Domańska-Siuda, & Nawrocki, 2014; Malec, Kuleta, & Migaszewski, 2016; Narkiewicz, 2007; Narkiewicz et al., 2010; Szulczewski, 1995; Szulczewski, Belka, & Skompski, 1996)
Table 1
Sample locations and thermochronological data from the Holy Cross Mountains. For analytical details, see Tables SI 1–SI 3.

<table>
<thead>
<tr>
<th>Sample code</th>
<th>Locality description</th>
<th>Co-ordinates</th>
<th>Elevation (m)</th>
<th>Lithology</th>
<th>Stratigraphic age of sample (c. numeric age, Ma)</th>
<th>ZHe age (Ma) average</th>
<th>Single grain ZHe age range in sample (Ma)</th>
<th>Thermal maturity</th>
<th>AFT age (Ma)</th>
<th>MTL (µm) (± SD)</th>
<th>AHe age (Ma) average</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td>Świętomarz</td>
<td>50°56'43"N 21°01'31"E</td>
<td>253</td>
<td>Sandstone</td>
<td>2.0</td>
<td>744 ± 128</td>
<td>2 8355-6539</td>
<td>1285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG1</td>
<td>Bukowa Góra</td>
<td>50°58'05"N 20°48'01"E</td>
<td>395</td>
<td>Bentonite</td>
<td>1.2</td>
<td>325 ± 16</td>
<td>3 294.2-350.</td>
<td>28.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>Dębnik</td>
<td>50°50'36"N 21°05'17"E</td>
<td>314</td>
<td>Greywacke</td>
<td>1.3-1.6(\delta)</td>
<td>317 ± 4</td>
<td>3 326.6-3118</td>
<td>7.8</td>
<td>109 ± 15</td>
<td>17</td>
<td>140 ± 1.7</td>
</tr>
<tr>
<td>DE1</td>
<td>Dębnik</td>
<td>50°50'36"N 21°05'17"E</td>
<td>313</td>
<td>Greywacke</td>
<td>1.3-1.6(\delta)</td>
<td>303 ± 42</td>
<td>3 364.8-261</td>
<td>54.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE2</td>
<td>Dębnik</td>
<td>50°50'36"N 21°05'17"E</td>
<td>313</td>
<td>Mudstone</td>
<td>1.3-1.6(\delta)</td>
<td>286 ± 24</td>
<td>3 370.0-2568</td>
<td>42.6</td>
<td>91 ± 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>Serumis</td>
<td>50°53'03"N 21°04'54"E</td>
<td>235</td>
<td>Greywacke</td>
<td>1.7(\delta)</td>
<td>310 ± 12</td>
<td>3 335.3-2931</td>
<td>22.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>Dębnio</td>
<td>50°53'35"N 21°00'01"E</td>
<td>256</td>
<td>Greywacke</td>
<td>1.7(\delta)</td>
<td>283 ± 7</td>
<td>3 288.7-2783</td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kielce Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>OST</td>
</tr>
<tr>
<td>KK1</td>
</tr>
<tr>
<td>P4</td>
</tr>
<tr>
<td>P1</td>
</tr>
<tr>
<td>BAR</td>
</tr>
<tr>
<td>PRO</td>
</tr>
<tr>
<td>P7</td>
</tr>
</tbody>
</table>

ZHe and AHe ages are given as unweighted average values.
N, number of measured crystals; SD, standard deviation; Uncertainty of the sample average ZHe and AHe ages are in 1 standard error, as (SD)/\(\sqrt{n}\)/2, where SD, standard deviation of the age replicates and \(n\), number of age determinations. Uncertainty of the central AFT ages is \(±1\sigma\) error. The outlier age is in parenthesis. VR, mean vitrinite reflectance (but in lower Palaeozoic sediments, measurements are performed on organic particle, which are not true vitrinite but usually graptolites). Thermal maturity data are from adjacent outcrops (except KK1); therefore, they show approximate thermal maturity of thermochronological sites. Conodont CAI, Conodont Colour Alteration Index; Temp., estimation of maximum palaeotemperature based on Barker and Pawlewicz (1994).

\(a\)Narkiewicz et al. (2010).
\(b\)Bielka (1990).
\(c\)Marynowski (1999).
\(d\)Smolarek et al. (2014).
\(e\)Schito et al. (2017).
\(f\)Marynowski, Czechowski, and Simonet (2001).
\(g\)Maximum temperature based on smectite illitization is c. 120–140°C (Środoń & Trela, 2012).
increases towards the HCF (Belka, 1990; Marynowski et al., 2002; Narkiewicz, 2017; Narkiewicz et al., 2010). This observation suggests large-scale fluid migration along the HCF during the late Carboniferous. Advection heat transfer by fluid migration along the HCF zone has already been postulated by Naglik et al. (2016), Narkiewicz et al. (2010) and Poprawa et al. (2005). The ZHe age of the northernmost sample SWI is not reset, suggesting that fluid penetration may have not reached the northern part of the HCM. All measured ZHe data together with the low thermal maturity of the Mesozoic sediments (Malec, 2015; Marynowski & Simoneit, 2009; Marynowski et al., 2002) contradict the occurrence of Jurassic or Cretaceous maximum palaeotemperatures as postulated by Poprawa et al. (2005) and Schito et al. (2017).

Recent seismic data image a Variscan thin-skinned thrust-and-fold belt emplaced on the SW slope of the East European Craton within the Teisseyre–Tornquist Zone, close to the HCM (Krzywiec, Gagala, et al., 2017; Krzywiec, Mazur, et al., 2017 Figure 1 inset). A Variscan compressional regime is invoked to explain the thin-skinned structuring of the pre-Permian sedimentary pile and ~20 km of calculated shortening (Figure 1; Krzywiec, Gagala, et al., 2017). Hence, Variscan heating might have been caused by a combined effect of tectonic and/or sedimentary burial and elevated heat flow during the late Carboniferous.

A number of previous studies invoked late Caledonian deformation in the HCM at the Silurian–Devonian transition (e.g. Gagala, 2015; Kowalczewski et al., 1998; Znosko, 1996). This timing, constrained by angular unconformities (e.g. Gagala, 2015), agrees with average ZHe ages between 417 and 407 Ma obtained from the Ordovician and Silurian samples, except for P1 (374 Ma), in the Kielce Region. Earliest Devonian ZHe ages may indicate possible late Caledonian cooling, and no Variscan re-heating into the ZHe partial retention zone. This result is only provisional owing to the spread of single grain ages, particularly those older than deposition, and a relatively low thermal maturity of the organic matter (Belka, 1990; Marynowski, 1999; Narkiewicz et al., 2010).

After late Variscan cooling, a temperature increase in most areas of the HCM occurred throughout the Mesozoic presumably due to sedimentary burial within the Mid-Polish Trough lasting until tectonic inversion in the Late Cretaceous (Figure 3b,c; e.g. Kutek & Głązek, 1972; Dadlez et al., 1995; Kutek, 2001; Lamarche, Lewandowski, et al., 2003). The latter was documented by the AFT data from samples P1, P2 (Figure 3b,c) and the AHe age from sample DE2 that suggest rapid cooling due to accelerated tectonic inversion of the Mid-Polish Trough, when both the Łysogóry and Kielce Regions were uplifted in the core of the Mid-Polish Swell (Krzywiec, 2002; Lamarche, Lewandowski, et al., 2003; Lamarche, Scheck, et al., 2003;

FIGURE 3 Thermal modelling results using HeFTy (Ketcham, 2005). The green range corresponds to the envelope of thermal paths with acceptable fit (goodness of fit—GOF>0.05), the purple range shows the envelope for thermal paths with good fit (GOF>0.5) (Ketcham, 2005). Bold black lines show the best fit curve, and the corresponding GOF values of each thermal dataset for this curve are listed in the lower right corner rectangle. (a) Sample KK1 from the western Kielce Region. A constraining box (dotted line) allows for maximum temperatures between 100 and 200°C until the Early Triassic. (b) Sample P1 from the eastern Kielce Region. (c) Samples P2/DE2 from the Łysogóry Region. Constraining boxes (dotted line) allow for maximum temperatures between 100 and 200°C until the early Permian in samples P1 and P2/DE2. Additional temperature increases up to 140°C are allowed in constraining boxes during the Mesozoic. For further details, see the Supporting Information.
Scheck-Wenderoth et al., 2008). The onset of inversion during the early Late Cretaceous (Krzywiec et al., 2009) was associated with fast cooling underlined by a narrow time lag between AFT (P2) and AHe (DE2, same outcrop). However, in the western part of the Kielce Region, thermal modelling results for KK1 show relatively steady cooling after a Variscan heating event due to slow exhumation, with only moderate acceleration of cooling that may be attributed to Late Cretaceous inversion (Figure 3a). KK1 and nearby OST samples have Jurassic AFT ages (168–202 Ma) and shortened MTL with standard deviations between 1.6 and 1.8. The large difference between ZHe and AFT as well as AFT and AHe ages confirm slow cooling throughout the Mesozoic and Cenozoic in this part of the HCM.

The HCF had a clear imprint on the maturity pattern created during the Variscan shortening of the HCM (Naglik et al., 2016; Nar- kiewicz et al., 2010; Poprawa et al., 2005) presumably providing a conduit for hydrothermal solutions circulating at that time. However, during the Late Cretaceous-earliest Palaeogene inversion, vertical displacements along the fault were probably too small to influence the maturity distribution as suggested from the thermal modelling results of samples from both sides of the fault (Figure 3b,c).

6 | CONCLUSIONS

Maturity distribution data in the pre-Permian vs. younger rocks point to a decisive role of the elevated late Palaeozoic heat flow for the HCM (cf. Narkiewicz, 2017). A late Variscan cooling event recorded by our ZHe data marks the end of an important thermal overprint presumably related to Variscan tectonics widespread in the HCM (e.g. Konon, 2006; Lamarche, Lewandowski, et al., 2003; Lamarche et al., 1999; Mizerski, 2004) and neighbouring areas (Krzywiec, Gągala, et al., 2017; Krzywiec, Mazur, et al., 2017). This event may have been caused by increased heat flow that was, at least partly, coupled with fluid circulation along the HCF (e.g. Narkiewicz et al., 2010). The increase in temperature across most of the HCM during the Mesozoic reveals subsidence of the Mid-Polish Trough and resulting burial. A final rapid cooling episode in the Late Cretaceous was caused by tectonic inversion (Krzywiec, 2002; Lamarche, Lewandowski, et al., 2003; Lamarche, Scheck, et al., 2003; Scheck-Wenderoth et al., 2008).

ACKNOWLEDGEMENTS

This research has been partially funded by the Institute of Geological Sciences, Polish Academy of Sciences and the Polish National Centre for Research and Development (NCRD) grant under the Blue Gas – Polish Shale Gas program – BG1/GAZGEOLUMOD/13 (AGH No. 17.17.866660). Mariusz Paszkowski and Stanisław Mazur were supported by the National Science Centre (NCN) (grant no. UMO-2012/05/B/ST10/00521). The authors cordially thank the editors of Terra Nova (Meinert Rahn and Klaus Mezger) as well as Martin Danišik and an anonymous reviewer for their valuable input, which significantly improved the quality of the paper.

ORCID

Dariusz Botor http://orcid.org/0000-0003-0157-4885

REFERENCES

Czarnocki, J. (1950). Geology of the Lysa GóRa Region (Święty Krzyż Mountains) in connection with the problem of iron ores at Rudki. Prace Państwowego Instytutu Geologicznego, 1, 404 pp. [in Polish, with English summary]

Kozłowski, W., Domanska-Siuda, J., & Nawrocki, J. (2014). Geochemistry and petrology of the Upper Silurian greywackes from the Holy Cross Mountains (central Poland); Implications for the Caledonian history of the southern part of the Trans-European Suture Zone (TESZ). Geological Quarterly, 58, 311–336.
SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Section SI 1. Samples and Methods.
Section SI 2. Thermal modelling.
Table SI 1. Zircon (U-Th)/He data.
Table SI 2. Apatite fission track data.
Table SI 3. Apatite (U-Th)/He data.

How to cite this article: Botor D, Anczkiewicz AA, Dunkl I, Golonka J, Paszkowski M, Mazur S. Tectonothermal history of the southwestern Holy Cross Mountains, Poland. Sedimentary Geology, 106, 21–49. https://doi.org/10.1016/0037-0738(95)00145-X