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Abstract
The South Alpine–Dinaridic realm was affected by igneous activity in the Middle Triassic; the marine carbonate platforms 
and the adjacent basins contain highly variable intrusive-volcanic assemblages. We studied the petrography and determined 
the zircon U–Pb ages of the Triassic volcanic products in the Transdanubian Range. The geochemical features and thus the 
geodynamic context of the magmatism are badly known, as the rocks experienced variable chemical alteration. The exact 
duration of the igneous activity is also poorly constrained, as the geochronological data of the former studies were obtained 
mostly by the weathering-sensitive K–Ar and Rb–Sr methods and thus some data even being younger than the age of the 
stratigraphic cover. The presence of andesite dikes and of pebbles and cobbles (< 20 cm) of basalt, andesite, rhyolite and of 
rhyolitic tuff in the Triassic carbonate platform deposits indicates that within the Transdanubian Range formed a volcanic 
complex in Triassic. The major mineralogical and geochemical features of the Transdanubian igneous suite are similar to 
the Triassic formations in the Southern Alps. However, dissimilar zircon composition excludes the immediate relationship 
of the zircon-bearing silicic formations in the two tectonic units. New U–Pb ages show that the beginning of the volcanic 
activity is probably coeval with the eruption of the widespread “pietra verde” trachytic tuffs in the Upper Anisian–Ladinian 
successions, but the majority of the ages are younger than those ash layers. The new age constraints give a bench-mark for 
the termination of the volcanic activity in Carnian time in the Transdanubian Range.
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Introduction

The Transdanubian Range Unit is a part of the Alcapa 
Mega-unit (Haas 2013). This fault-bordered terrane—
including the Bakony Mountains and Buda Hills—was 
located close to the Southern Alps at the northwesternmost 
edge of the opening Vardar ocean during the Middle–Late 
Triassic and it belonged to the wide carbonate shelf of 
the western Tethys (e.g. Kázmér and Kovács 1985; Haas 
et al. 1995; Vörös 2000). Presence of volcanic tuffs in the 
Triassic succession of the Transdanubian Range had been 
recognised already by Böckh (1873) in the Bakony Moun-
tains (Fig. 1). According to Lóczy (1916), the Ladinian 
“Buchenstein beds” are made up of siliceous limestones, 
marls and “pietra verde” tuffs. These pyroclastic layers 
have trachytic composition and they consist of mainly san-
idine, biotite, few quartz and secondary minerals (Szabó 
and Ravasz 1970; Ravasz 1973). Literature data and the 
present study provide evidence that, in addition to the late 
Anisian–Ladinian “pietra verde” pyroclastic fall deposits 

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0053 1-019-01714 -w) contains 
supplementary material, which is available to authorized users.

 * Éva Farics 
 eva.gyorfy@gmail.com

1 Department of Sedimentology and Environmental Geology, 
Geoscience Center, University of Göttingen, Göttingen, 
Germany

2 Department of Geology and Meteorology, University of Pécs, 
Pécs, Hungary

3 Department of Petrology and Geochemistry, Eötvös Loránd 
University, Budapest, Hungary

4 MTA-ELTE Volcanology Research Group, Budapest, 
Hungary

5 MTA-ELTE Geological, Geophysical and Space Science 
Research Group, Budapest, Hungary

http://crossmark.crossref.org/dialog/?doi=10.1007/s00531-019-01714-w&domain=pdf
https://doi.org/10.1007/s00531-019-01714-w


 International Journal of Earth Sciences

1 3

present in the Southern Alps and derived from an unknown 
remote volcanic centre, a Middle–Late Triassic volcanism 
also occurred within or close to the Transdanubian Range. 
This volcanic activity was documented by Raincsák (1980) 
and Budai et al. (2001) in the Middle Triassic succession 
of the Bakony Mountains. A comparison of the Middle 
Triassic volcanic successions of the Bakony Mountains, 
Bükk Mountains, Southern Alps and Northern Calcare-
ous Alps was presented by Bechstädt and Mostler (1976), 
Cros and Szabó (1984), Szoldán (1990) and Harangi et al. 
(1996). They concluded that the Transdanubian Range may 
have been relatively close to the South Alpine volcanic 

centres, whereas the area of the Northern Calcareous Alps 
was located in a more distal position.

This igneous activity—similarly to those of the Southern 
Alps—is slightly enigmatic, as it is localized in a passive 
margin setting during the development of carbonate plat-
form successions. The geodynamic evaluations based on the 
geochemical character of the Southern Alpine and Dinaridic 
occurrences yielded ambiguous results, showing signs for 
both, continental rift and magmatic arc settings (e.g. Bébien 
et  al. 1978; Beltrán-Triviño et  al. 2016). Harangi et  al. 
(1996) linked the Middle–Late Triassic volcanism to early 
extensional events that were followed by a more developed 

Fig. 1  Simplified structural map of the Southern Alps, the Transdan-
ubian Range (TR) and the surrounding areas with the major occur-
rences of the Triassic igneous formations (map base after Csontos 
and Vörös 2004; Schmid et al. 2008). Square represents the geologi-

cal map of TR (Fig. 2). Abbreviations of the most significant intru-
sive complexes and tuff/volcanic occurrences: Re Recoaro, Pr Pre-
dazzo, Dr Drauzug, Ek Eisenkappel, Ba Bakony Mts., Bu Buda Hills, 
Bü Bükk Mts., Ve Vepor Mts.)
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rifting phase in the Bükk Mountains, Bakony Mountains 
and Buda Hills.

The aim of this paper is to complete the information about 
the puzzle of the dissected parts of the former carbonate 
platform by new petrographical and geochemical data from 
the Triassic volcanogenic formations of the Bakony Moun-
tains and Buda Hills and to supply new time constraints by 
U–Pb ages for the duration of the volcanic activity.

Geological setting and traces of Triassic 
volcanism in the Transdanubian Range

The Transdanubian Range is the uppermost unit of the 
Austroalpine Nappe System forming a syncline structure 
(e.g. Tari et al. 1992). The development of its Upper Per-
mian–Lower Cretaceous formations shows close affinity 
with that of the Southern Alps (Lóczy 1916; Haas and Budai 
1995). The thickest part of the sequence is made up of Tri-
assic shallow marine carbonates (Haas 2013). The Triassic 
magmatic dikes, volcanic pebbles and cobbles occur in three 
formations in the Bakony Mountains and in the vicinity of 
the Buda Hills (Fig. 2).

1. The Upper Anisian Vászoly Formation contains distal, 
several cm-to-max 2 dm-thick, bentonitised trachytic, 
sometimes graded, primary fallout tuff layers (Budai 
et al. 1999, 2001, 2015). These strata are equivalent to 
the slightly thicker “pietra verde” layers in the Dolo-
mites (Mojsisovics 1879), and they are widespread in 

the entire Southern Alpine–Dinaridic realm (e.g. Oben-
holzner 1991; Jelaska et al. 2003). The biostratigraphic 
assignment of these ash layers is well constrained by 
ammonoid, conodont and radiolarian data to be in the 
Reitzi Zone (Vörös 1993; Dosztály 1993; Kovács 1994; 
Pálfy et al. 2003). The zircon content of the ash and 
bentonite layers of mostly trachytic chemical character 
allowed highly precise U–Pb geochronology (see details 
below). According to the accurate biostratigraphic, iso-
tope geochronologic and paleomagnetic constraints 
(Márton et al. 1997) the Felsőörs section was even pro-
posed as a candidate for a Global Stratotype Section and 
Point for the base of the Ladinian stage (Vörös et al. 
1996, 2003).

2. Andesite dikes are known in the quarry of Szár Hill at 
Polgárdi and they have been detected by the Budaörs-1 
and Budafok-1 cored deep drillings of the Buda Hills 
(Kubovics 1985; Dunkl et al. 2003; Haas et al. 2017). 
The well exposed, gray porphyritic dikes in the Szár 
Hill quarry, are 5–10 m thick, while the apparent thick-
nesses of the partly fault-bounded dikes in the boreholes 
are between 60 and 186 m (Budaörs-1 and Budafok-1, 
respectively).

3. Pebbles of volcanic rocks were recognized in the Middle 
Triassic sequence of the Bakony Mountains (Raincsák 
1980). This volcanoclastic sandstone (Inota Fm.) was 
correlated with the Wengen Group of the Southern Alps 
(Mojsisovics 1879; Budai and Vörös 1993; Budai et al. 
2001). Clasts of volcanic rocks were also found at the 
base of the Upper Eocene transgressive sequences of the 
Buda Hills (Wein 1977; Horváth and Tari 1987; Farics 
et al. 2015). As will be discussed below, the “pietra 
verde” tuff originated from remote sources, while the 
(2) and (3) type formations are local volcanic products 
within the Transdanubian Range (Budai et al. 2001).

With the exception of a single U–Pb age (Haas et al. 2017), 
only whole-rock, biotite and hornblende K–Ar data are avail-
able from the dikes and pebbles (Balogh et al. 1983; Horváth 
and Tari 1987). The dated aliquots contain highly variable 
amounts of potassium and radiogenic argon, and they yielded 
a wide age range from 240 to 25 Ma. The isotopic systems 
have been strongly influenced either by the interaction of the 
dikes with the carbonate host rocks or by the weathering of the 
pebbles. Thus, their significance for the timing of eruptions 
and on the duration of the volcanic activity is weak.

Fig. 2  Simplified geological map of the Transdanubian Range with-
out Cenozoic sedimentary cover (after Haas et  al. 2010). Codes of 
boreholes are in italics (for explanation of abbreviations see Table 1)
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Triassic igneous activity in the South 
Alpine realm and their geochronological 
constraints

According to the palaeogeographic reconstructions, the 
Transdanubian Range was located in the neighbourhood 
of the Southern Alps before the Alpine orogeny (Kázmér 
and Kovács 1985; Haas et al. 1995; Schmid et al. 2008). 
Thus, it is necessary to insert a short review of the well 
exposed and studied Triassic igneous formations of the 
Southern Alps before the evaluation of our new results 
from the Transdanubian Range.

The “pietra verde” tuff layers (e.g. Obenholzner 1991) 
were dated both in the Alps and in the Bakony Moun-
tains by high precision and accuracy and those data were 
contributed even to the global calibration of the Triassic 
chronostratigraphic scale (Mundil et al. 1996, 2010; Pálfy 
et al. 2003; Brack et al. 2005; Furrer et al. 2008; Stockar 
et al. 2012; Wotzlaw et al. 2018). The ID-TIMS data reveal 
that these trachytic eruptions took place between 242 and 
237 Ma.

The Predazzo Complex is the largest of the Triassic 
intrusive igneous bodies of the Eastern Southern Alps. 
The intrusive rocks show wide variation in composition: 
monzonite is the dominant rock type, but monzodiorite, 
monzogabbro, gabbro with pyroxenite, granite, quartz-
syenite and syenite, also occur (Lucchini et  al. 1982; 
Menegazzo Vitturi et al. 1995; Visonà 1997; Carraro and 
Visonà 2003; Casetta et al. 2018). The dike rocks are also 
highly diverse: latibasalt, latiandesite, K-basanite, mon-
zosyenite, aplite and lamprophyre were reported by Gal-
litelli and Simboli (1971). Some of the carbonate plat-
forms of the Dolomites are covered by subaerial basaltic 
flows (e.g. Monte Agnello), but submarine formations like 
pillow lavas and hyaloclastite-rich volcano-sedimentary 
formations are more common in the intra-platform basin 
fill (Gaetani et al. 1981; Preto et al. 2001; Bosellini et al. 
2003; Budai et al. 2005; Németh and Budai 2009). In the 
western Southern Alps the Montecampione subvolcanic 
complex shows slightly more alkaline character, but the 
sodium, potassium and trace element contents were prob-
ably influenced by intense fluid circulation (Armienti et al. 
2003).

The geodynamic interpretation of this magmatism is 
debated because beyond the obvious traces of Triassic syn-
sedimentary extensional tectonics manifested, e.g. by half-
grabens (Bertotti et al. 1993; Budai and Vörös 1993, 2006; 
Velledits 2006), strike-slip and compressional tectonics 
make the image more complex (Castellarin and Rossi 
1981; Blendinger 1984; Castellarin et al. 1988). However, 
the wide spectrum of rock types and their trace elements 
and Hf-isotope systematics would fit to an extensional 

regime. Beltrán-Triviño et al. (2016) related the Triassic 
magmatism to an asymmetrical continental rifting process 
that affected the entire Southern Alps and the adjacent 
areas. The geodynamic evaluation of the Triassic vol-
canism in the Dinarides resulted in similar dilemma; the 
compositional spectrum of the lithologies (from basalt to 
rhyolite) and their geochemical features match neither to 
the rifting nor to the arc settings (Bébien et al. 1978).

Evaluating the age constraints from the Predazzo Com-
plex and from other Triassic volcanic formations, we should 
distinguish between weathering/alteration-sensitive and 
more robust geochronometers. The Rb–Sr and K–Ar ages 
scatter between 230 and 204 Ma (Borsi and Ferrara 1967; 
Borsi et al. 1968; Ferrara and Innocenti 1974; Webb 1982; 
Crisci et al. 1984; Laurenzi 1994; Visonà 1997; Balogh and 
Németh 2005). Similar to the Bakony Mountains, some of 
these ages clearly post-date the stratigraphically proven 
age range of the volcanic activity. U–Pb and Sm–Nd ages 
(246–224 Ma) are available only from a few igneous bodies 
of the Southern Alps (Zanetti et al. 2013; Storck et al. 2018), 
Eisenkappel pluton (Lippolt and Pidgeon 1974; Miller et al. 
2011), Western Carpathians (Putiš et al. 2000), Bükk Moun-
tains (Haas et al. 2011; Kövér et al. 2018), Eastern Alps, and 
northwestern Dinarides (Neubauer et al. 2014).

Samples

We collected “pietra verde” tuff, volcanogenic sandstone 
and conglomerate drilling core and outcrop samples from 
Triassic strata and from the base of the Eocene transgressive 
sequence that unconformly covers the partly eroded Trias-
sic successions. Actually, all known and accessible volcanic 
formations (Vászoly Fm., Inota Fm.) were sampled in the 
Bakony Mountains and Buda Hills. Additionally, we have 
taken seven pilot samples for geochronology and zircon 
geochemistry from the Triassic igneous formations of the 
eastern Southern Alps. The localities of the dated samples 
are listed in Table 1, and a list of petrographically analysed 
samples is given in the Electronic Supplementary Material 
(ESM_1.xls). To represent properly the sources of the coarse 
volcanic fragments, we performed pebble-population dat-
ing (PPD-method; Dunkl et al. 2009) on selected and amal-
gamated andesite, and acid volcanite + ignimbrite pebbles. 
These “PPD” samples were composed of a representative 
selection of 16–54 equal-sized volcanic rock pebbles or peb-
ble fragments.

Analytical methods

For the petrographic investigation of the volcanic rocks 
Olympus BH2 polarization microscope was used. The 
composition of feldspar, pyroxene, and amphibole was 
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determined with AMRAY 1830 scanning electron micro-
scope with EDAX PV 9800 ED spectrometer at the Eötvös 
University, Budapest. Major, trace and rare earth elements of 
the whole-rock samples were measured at the University of 
Göttingen by X-ray fluorescence analysis, and by ICP–AES 
and ICP–MS techniques in ACME Labs (Vancouver).

Zircon crystals were fixed on a double-side adhesive 
tape stuck on a thick glass plate and embedded in a 25 mm 
diameter epoxy mount. The crystal mounts were lapped by 
2500 mesh SiC paper and polished by 9-, 3-, and 1-micron 
diamond suspensions. Cathodoluminescence images were 
obtained using a JEOL JXA 8900 electron microprobe at the 
University of Göttingen to study the internal structure of the 
zircon crystals and to select homogeneous parts for in situ 
age determination.

The U–Pb dating was performed by laser-ablation single-
collector sector-field inductively coupled plasma mass spec-
trometry (LA–SF–ICP–MS). The method employed for our 
analyses has been described in detail by Frei and Gerdes 
(2009). We used a Thermo Element 2 mass spectrometer 

coupled to a Resonetics excimer laser with Laurin Technic 
155 constant geometry ablation cell. All age data presented 
here were obtained by single-spot analyses with a laser 
beam diameter of 33 µm and a crater depth of approximately 
10 µm. The laser was fired at a repetition rate of 5 Hz and 
at nominal laser energy output of 25%. The data reduction 
is based on the processing of ca. 50 selected time slices 
(corresponding ca. 14 s) starting ca. 3 s. after the beginning 
of the signal. If the ablation hit zones or inclusions with 
highly variable actinide concentrations or isotope ratios, 
then the integration interval was slightly resized or the 
analysis was discarded (~ 1% of the spots). The individual 
time slices were tested for possible outliers by an iterative 
Grubbs test (applied at P = 5% level). The age calculation 
and quality control are based on standard-sample bracketing 
using GJ-1 zircon reference material (Jackson et al. 2004). 
For further control the Plešovice zircon (Sláma et al. 2008), 
the 91,500 zircon (Wiedenbeck et al. 1995) and the FC-1 
zircon (Paces and Miller 1993) were analysed as “second-
ary standards”. The results obtained on the zircon reference 

Table 1  Locality and petrography of the samples yielded usable geochronological results

The entire sample list used for petrographical study is in the Electronic Supplementary Material (ESM_1.xls). PPB indicates pebble population 
dating according to Dunkl et al. (2009)
a At boreholes the true elevation of the sample relatively to sea level is indicated

Type Code Long. (°) Lat. (°) Elevation (m)a Locality/borehole, depth 
(m)

Area Petrography

Andesite dikes BU 18.974 47.471 − 577.4 Budaörs-1, 790.4 m Buda Hills Andesite dike
Bf-1 19.021 47.409 − 1047 Budafok-1, 1147 m Buda Hills Andesite dike

Volcanogenic sandstones ZS 18.702 47.542 222 Strázsa Hill quarry Zsámbék basin Volcanoclastite layer
GYE-5 18.183 47.208 134 Várpalota-3, 37 m S. Bakony Mts. Volcanoclastite layer
GYE-6 18.196 47.225 164 Bakonykút-2, 21 m S. Bakony Mts. Volcanoclastite layer
GYE-7 18.196 47.225 123 Bakonykút-2, 62 m S. Bakony Mts. Volcanoclastite layer
GYE-3 18.950 47.463 155 Budaörs, Kálvária Hill Buda Hills Volcanogenic sandstone
BU-14 18.952 47.462 150 Budaörs, Kálvária Hill Buda Hills Volcanogenic sandstone

Pebble-population sam-
ples from the base of 
the Eocene transgres-
sive sequence

Bö_blk 18.955 47.464 193 Budaörs, Kő Hill Buda Hills Black andesite PPD-1
A_blk 18.955 47.464 193 Budaörs, Kő Hill Buda Hills Black andesite PPD-2
Bö_gr 18.955 47.464 193 Budaörs, Kő Hill Buda Hills Green acid volcanic 

PPD-1
AP_gr 18.955 47.464 193 Budaörs, Kő Hill Buda Hills Green acid volcanic 

PPD-2
Bö_ri 18.955 47.464 193 Budaörs, Kő Hill Buda Hills Rhyolite tuff PPD
BU-10 18.931 47.523 332 Budakeszi sanatorium Buda Hills Andesite PPD
GYE-4 19.036 47.590 225 Róka Hill Buda Hills Andesite PPD

Pietra verde Förs 17.943 47.018 230 Felsőörs S. Bakony Mts. Bentonitic trachite tuff
DX-11 18.020 47.134 195 Hajmáskér S. Bakony Mts. Bentonitic trachite tuff

Triassic igneous samples 
from the eastern South-
ern Alps

DO-531 11.589 46.314 1310 Predazzo W Dolomites Monzonite
DO-504 11.603 46.307 1052 Predazzo-Bellamonte Dolomites Mela-diorite
DO-32 11.221 45.721 660 Recoaro N S. Alps Rhyolite
SI-X1a 13.653 46.596 1110 Nötsch im Gailtal Drauzug Tuffite
EK-1 14.590 46.477 610 Eisenkappel Drauzug Granite
EK-5 14.614 46.475 733 Eisenkappel Drauzug Granite
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materials express the precision and the accuracy of the dat-
ing method applied (see details in Electronic Supplementary 
Material ESM_2.pdf). Drift- and fractionation-corrections 
and data reductions were performed by our in-house soft-
ware (UranOS; Dunkl et al. 2008). The concordia plots were 
constructed by the help of Isoplot/Ex 3.0 (Ludwig 2012).

Results

Petrography of the Triassic volcanic products 
of the Transdanubian Range

Dike rocks

The Triassic volcanic formations are often altered, most of 
the phenocrysts are replaced by secondary minerals and we 
can observe only pseudomorphs after them. Due to strong 
alteration, it is often not possible to achieve a reliable geo-
chemical classification. In these cases, we characterized the 
samples according to their petrographic features.

The lava and dike rocks are mostly comprised of 
andesite. The unaltered porphyritic andesite contains 
large-zoned labradorite-andesine and small andesine-basic 
oligoclase crystals, hypersthenic orthopyroxene, and sub-
ordinately augitic clinopyroxene and biotite. The amphi-
bole is hornblende in composition and it was found only in 
the andesite dikes of the Szár Hill (Fig. 3a). Ilmenite, apa-
tite, garnet, magnetite, zircon and monazite are the acces-
sory minerals. The phenocrysts are often replaced by clay 
and opaque minerals, chlorite, chalcedony, carbonate, and 
sericite (Fig. 3b, c). In the fine-grained groundmass thin 
laths of plagioclase, and variable amounts of partly altered 
(chloritized) glass are present. In the samples from the 
lower part of the dike in Budaörs-1 well-intense K-meta-
somatism was detected, the plagioclase altered to K-feld-
spar (Fig. 3d). Complete alteration of the groundmass to 

secondary silica is observed, especially in the volcanic 
clasts of the Eocene conglomerates. The vesicles are filled 
mostly by chalcedony and glauconite. The andesite often 
contains microdiorite inclusions.

Triassic volcanogenic sandstones and conglomerates

In the Bakony Mountains and in the Strázsa Hill quarry 
(Zsámbék), the volcanogenic sandstones and conglomer-
ates form clast-supported, polymict deposits. Subangular-
to-subrounded mafic–intermediate volcanic clasts are usu-
ally much larger (up to 20 cm) and more common than 
the subrounded acidic volcanic clasts (≤ 3 cm). The phe-
nocrysts are completely altered to secondary minerals, but 
three types of mafic lithologies can be distinguished. One 
type contains abundant vesicles and a few pseudomorphs 
after plagioclase, pyroxene and olivine phenocrysts 
(Fig. 3e). The other type has an intersertal texture with 
plagioclase microliths in the groundmass and few pseu-
domorphs after plagioclase and mafic phenocrysts. The 
third type is microgabbro with intergranular texture; the 
xenomorphic mafic minerals occur in the spaces among 
the plagioclase laths. Some of the andesites are character-
ized by the presence of porphyric labradorite–andesine 
plagioclase, hypersthenic orthopyroxene and few biotite 
as well as laths of andesine-basic oligoclase plagioclase 
in the groundmass (Fig. 3f, g). In several pebbles the pla-
gioclase has been replaced by K-feldspar due to intense 
K-metasomatism. The latite–trachyte pebbles are char-
acteristically different from the andesite, they contain 
primary alkali feldspar (K-feldspar) and less plagioclase. 
Another type of basaltic/andesitic clasts is vesicle-rich and 
contains only plagioclase phenocrysts (Fig. 3g). The acidic 
volcanic pebbles consist of quartz, K-feldspar and biotite. 
Rhyolite contains dark and light flow banding and has 
poorly developed micropoikilitic texture (Fig. 3h). Three 
types of devitrificated rhyolite lava and rhyolite tuff can 
be found. The first one consists of mostly pumice and few 
glass shards with very few labradorite phenocrysts and 
more acidic plagioclase microliths. The second one has 
perlitic texture, and the third one has spherulitic texture. 
Acidic tuff clasts (only in the Strázsa Hill quarry) contain 
pumice and Y-shaped glass shards, pseudomorphs after 
K-feldspar and biotite flakes, as well as lithic fragments 
(Fig. 3i). Beside the lithoclasts, the labradorite-basic oli-
goclase, hypersthenic orthopyroxene, hornblende amphi-
bole, biotite, augitic clinopyroxene and altered olivine 
crystal fragments are in the volcanogenic sandstone layers 
of the Bakony Mountains, as well as strongly altered pla-
gioclase (mostly altered to K-feldspar), biotite, pyroxene, 
quartz in the volcanogenic sandstones of the Strázsa Hill 
quarry.

Fig. 3  Characteristic photomicrographs showing the textures of Mid-
dle–Late Triassic volcanic rocks from the Transdanubian Range. Bö-
1 Budaörs-1 borehole, Bút-2 Bakonykúti-2 borehole; for the locali-
ties see Fig. 2. a Texture of fresh andesite (crossed N), Bö-1, 773 m 
(from Farics et al. 2015). b Texture of weakly altered andesite. The 
pyroxene is altered to secondary minerals, but the plagioclase is fresh 
(1 N), Bö-1, 775.9 m. c Strongly altered andesite clast in Eocene con-
glomerate with pseudomorphs of phenocrysts (1  N), Budakeszi. d 
Texture of K-trachyte—rims of K-feldspar along altered plagioclase 
(by K-metasomatism) and pseudomorph after pyroxene (1 N), Bö-1, 
808.6 m. e Strongly vesiculated texture of a basalt clast in the volca-
nogenic sandstone/conglomerate (1 N), Hideg Valley, Inota. f Texture 
of andesite clast (1  N), Bút-2, 62  m (from Farics and Józsa 2017). 
g Texture of basalt/andesite clasts in volcanogenic rock (1 N), Bút-2 
62 m. h Texture of flow banding rhyolite clast (1 N), Hideg Valley. 
i Texture of moderately welded ignimbrite clast (1 N), Strázsa Hill. 
j Texture of acid tuff clast in Eocene conglomerate (1  N), Kő Hill 
(Farics et al. 2015)

◂
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Volcanic clasts from the base of Eocene conglomerates

In the basal layers of the Eocene conglomerate of the Buda 
Hills we found mostly andesite and acidic lava and tuff peb-
bles (Fig. 3j).

Geochemistry

The volcanic rocks showing mafic petrographical charac-
ters are strongly altered and are not suitable for geochemical 
analysis (LOI up to 20%; Electronic Supplementary Material 
ESM_3.xls). However, there are some less altered interme-
diate and felsic volcanic samples from Buda Hills, Strázsa 
Hill quarry and Bakony Mountains that yielded useful major 
and trace element data. Nevertheless, these rocks still have 
some significant LOI content, therefore their compositions 
should be evaluated with caution. All samples are plotted on 
the total alkali versus silica (TAS) diagram after recalcula-
tion to anhydrous basis (Fig. 4). They fall mostly into the 
andesite field, whereas a few samples are rhyolite. The sam-
ples showing trachyandesite–trachyte compositions could 
have experienced some alkali enrichment during alteration, 
whereas alkali leaching can not be excluded in case of a few 
samples. Immobile trace elements can be effectively used as 
indicators for rock types (Pearce 1996) even for altered and 
slightly metamorphosed rocks. Based on the Nb/Y vs. Zr/
TiO2 diagram the analysed rocks are mainly andesite in spite 
of their TAS classification.

The immobile trace elements suggest subalkaline affinity 
(Fig. 4), and they plot in the active continental margins field 
in the tectonomagmatic setting discrimination diagram of 
Gorton and Schandl (2000) for felsic and intermediate rocks 
(Fig. 5). The samples having andesitic petrographical char-
acter usually show enrichment in LIL elements (Ba, Rb, Th, 
U) and negative anomalies for certain HFS elements (Nb, 
P, Ti), although the latter ones are not always pronounced 
(Fig. 6). The REE patterns of most andesite samples are 
similar with negative Eu anomaly, suggesting plagioclase 
fractionation. Notably the samples classified as rhyolite and 
trachyte based on their petrographic character show much 
larger compositional distribution, having lower and higher 
values for LREE. This compositional variation can be traced 
also on the multivariate trace element diagrams (Fig. 6).

Mineral chemistry

The strongly altered character of the studied volcanic rocks 
is reflected in their mineral assemblage, since only a few 
samples contain detectable mafic minerals, such as pyrox-
ene and amphibole. Pyroxene is present only in a few mafic 
and intermediate volcanic samples of the Transdanubian 
Range. The orthopyroxene has a composition from En57 to 
53 mol %, while clinopyroxene is of augitic composition. 

Amphibole can be found only in the samples from Szár Hill 
quarry and wells of Bakony Mountains, they are Mg-horn-
blende and tschermakite. Plagioclase shows a wide compo-
sitional range with An content ranging from 10 to 70 mol % 
(ESM_4.xls and ESM_5.pdf).

Zircon U–Pb geochronology

Laser-ablation ICPMS U–Pb geochronology was per-
formed on 485 separated, CL-mapped, zircon crystals in 
the GÖochron Laboratories of the University of Göttingen. 
Some samples have poor zircon yield, due to either their 
mafic character, or due to the small amount of the available 

Fig. 4  a Total alkali vs. silica (TAS) classification diagram (Le Bas 
et  al. 1986) and b Zr/TiO2 vs. Nb/Y classification diagram (Pearce 
1996) for the Triassic volcanic rocks of Transdanubian Range. Data 
from Kiss (1954), Harangi et  al. (1996), Szabó et  al. (1996), Dunkl 
et al. (2003) and own data. The raw analytical data can be found in 
the Electronic Supplementary Material (ESM_3.xls)
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drilling cores. Ca. 20% of the obtained ages were much 
older or younger than Triassic; these spots were meas-
ured probably on xenocrystals of the Triassic magmatites 
or on Cenozoic igneous pebbles that were mixed into the 
PPD samples pooled from the Eocene strata. A synopsis 
of the results is listed in Table 2, the detailed analytical 
data are given in the Electronic Supplementary Material 
(ESM_6.xls and ESM_7.pdf). Where possible, the ages 

were calculated as concordia age, otherwise we consid-
ered only those analyses that are 100 ± 10% concordant 
and applied the Isoplot “ZircAge” algorithm to express a 
mean age for the crystallization of the most reliable zircon 
population according to Ludwig (2012). The age data are 
grouped according to major types of the samples and the 
mean values with the uncertainty intervals are plotted in 
Fig. 7.

Before the presentation of the results from Transdanu-
bian Range we should consider the U–Pb data obtained on 
the Eisenkappel intrusion. This narrow granitoid body is 
situated along the Periadriatic Line and was dated already 
by several methods and yielded 227 ± 7 Ma biotite and 
244 ± 8 Ma hornblende K–Ar ages, 230 ± 5 Ma titanite 
U–Pb age and 238.4 ± 1.9 Ma and 242.1 ± 2.1 Ma gar-
net-whole rock Sm–Nd ages (Lippolt and Pidgeon 1974; 
Miller et al. 2011). Our new laser-ablation zircon U–Pb 
ages (234.1 ± 2.5 and 231.2 + 5.8 − 2.2 Ma) are close to 
the formerly measured titanite U–Pb ages and obviously 
younger than the Sm–Nd data.

Component analysis was performed on the ± 10% con-
cordant single-crystal 206Pb/238U ages determined in the 
volcanoclastic formations. The individual samples contain 
relatively low number of single-crystal ages, thus their 
component analyses do not result in a reliable image on 
the substantive age components of the entire volcanic 
activity. That is why we evaluated the pooled data com-
posed from the single-crystal ages of all samples from the 
Transdanubian Range by the component analysis methods. 
This pooled data set does not contain the ages obtained 
on the distal “pietra verde” ash layers, as the aim of the 
dating and component analysis were to characterize the 
local volcanic sources. Two different algorithms were used 
to identify the age components: “PopShare” (Dunkl and 
Székely 2002) and “DensityPlotter” (Vermeesch 2012). 
The former procedure assumes Gaussian distribution 
of the age components and uses the simplex algorithm 
(Cserepes 1989), while the “Density Plotter” uses the 
normal mixture modelling algorithm of Galbraith (2005). 
Beyond the Triassic age components Paleogene and Per-
mian age components were also isolated from the Eocene 
conglomerates, but these are not in the scope of the current 
study. The Triassic age spectra could be decomposed to 
two major age components (Fig. 8). The two procedures 
resulted in identical mean values: 238.1 ± 4.0 (s.d.) and 
238.2 ± 0.9 (s.e.) for the older, and 228.1 ± 3.4 (s.d.) and 
229.4 ± 1.1 (s.e.) for the younger age component (“Pop-
Share” and “DensityPlotter”, respectively). The isolated 
older age component corresponds to the younger TIMS 
ages of the “pietra verde” ash layers (e.g. Pálfy et al. 2003; 
Mundil et al. 2010; Wotzlaw et al. 2018) and indicates that 
coarse-grained younger volcaniclastic sediments contain 
reworked fragments also from this slightly older volcanic 

Fig. 5  Implications for the original tectonomagmatic settings of the 
Triassic volcanic rocks of the Transdanubian Range by the discrimi-
nation of Gorton and Schandl (2000). Triangles represent samples 
with more than 5% LOI. ACM active continental margins, WPVZ 
within-plate volcanic zones, WPB within-plate basalts. The legends 
are the same as in the Fig. 4

Fig. 6  Multi-element variation diagram for the Triassic volcanic 
rocks of Transdanubian Range. Normalization values for primitive 
mantle are from Sun and McDonough (1989). Data from Harangi 
et  al. (1996) and own data. The detailed data are in the Electronic 
Supplementary Material (ESM_3.xls). The legends are the same as 
in the Fig. 4
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event. The younger age component is an obvious proof 
on a distinct period of volcanic activity in Carnian time.

Discussion

The dikes and pebbles are mineralogically and chemically 
strongly transformed, thus the petrographical character of 
the volcanic rocks should be deduced mostly from the pre-
served mineral assemblages. The spectrum is wide, beyond 

quartz and K-feldspar both calcic and sodic plagioclase 
occur, and the mafic minerals also reflect the highly vari-
able composition: olivine, pyroxene, amphibole and biotite 
were recognised. Only andesite dikes were hit by the deep 
drillings and exposed in the quarries, and in the pebbles and 
cobbles the most dominant lithologies are andesite, basal-
tic andesite, latite-trachyte, rhyolite and rhyolite tuff. One 
should consider the selective decomposition; the preserved 
pebble spectra are biased by the loss of mechanically and 
chemically more sensitive lithologies like weakly welded 
tuffs and foid-bearing rocks.

A part of the volcanic rocks has altered chemical compo-
sition, as shown by the elevated LOI and the large variation 
in alkaline contents. In addition, even the relatively immo-
bile HFS trace elements appear to show some secondary 
modification which makes the rock classification difficult. 
Nevertheless, most of the analysed samples can be classified 
as andesites based on fluid-immobile incompatible trace ele-
ment ratios. The classification of the silicic volcanic rocks is 
more problematic, since fractionation of accessory minerals 
strongly affects these element ratios. The revised Th/Yb–Ta/
Yb diagram (Gorton and Schandl 2000 after Pearce 1982, 
1983) is used to infer the tectonic affinity of the volcanic 
rocks. All of them fall into the active continental margin 
field based on the relatively low Ta/Yb ratios. This geo-
chemical character is similar to the rocks from the Dolo-
mites (Castellarin et al. 1988) and confirm their common 
petrogenesis. According to our point of view the negative 
Nb–Ta anomaly in the trace element pattern and thus a lower 
Ta/Yb ratio could also originate from lithospheric mantle 
metasomatized by subduction-related fluids in the past and 
remobilization during a lithospheric extension event (Slo-
man 1989 and Bonadiman et al. 1994). Together with the 

Fig. 7  Compilation of the 
new LA–ICPMS U–Pb ages 
obtained on the different 
Triassic volcanic formations of 
the Transdanubian Range and 
Southern Alps. PPD: pebble 
population samples compiled 
from andesite and rhyolite 
fragments from the Eocene 
base conglomerate covering 
the denudation surface of the 
Triassic in the Buda Hills. PV 
(TIMS): Range of ‘pietra verde’ 
volcanic activity by high-reso-
lution U–Pb dating (see text for 
sources). Right panel shows the 
most recent Triassic time scales; 
(1) Mundil et al. (2010), (2) 
Cohen et al. (2013, updated)

Fig. 8  Compilation of all Triassic zircon U–Pb single-grain ages 
obtained on the volcanic and volcanoclastic formations of the Bakony 
Mountains and Buda Hills—without the data measured on the ‘pietra 
verde’ tuff layers. N = 274, the Tertiary ages and the inherited, pre-
Triassic ages are not displayed; bin width = 2.5 Myr
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presence of the dikes-penetrating platform carbonate and 
basinal carbonate successions, the abundance and large size 
of the Triassic volcanic pebbles and cobbles indicate that 
their source was within the Transdanubian Range. Long 
transport distance is not a plausible scenario for the prove-
nance of the pebbles. A longer river could not develop on the 
passive margin that was dominated by the patchy arrange-
ment of carbonate reefs and basins. Longer, wave-driven 
sediment transport alongshore or between the reef bodies is 
also not a feasible scenario due to the coarse size and partly 
angular shape of the detritus and the sensitivity of the vol-
canic lithologies to weathering. Pebbles of intrusive rocks 
are present only in minor amount in the Triassic and in the 
Eocene conglomerates, thus we assume a volcanic centre, 
but the intrusive-subvolcanic root is less developed than in 
the case of the Predazzo Complex, or the erosion has not 
exhumed the subvolcanic level yet.

The new U–Pb ages indicate that in the Transdanubian 
Range the deposition of the Anisian–Ladinian “pietra verde” 
tuff was followed by Carnian volcanism with variable, mafic 
to acid character. Remarkable, that the Triassic volcaniclas-
tic successions in the central and eastern Southern Alps 
(Garzanti 1985) do not contain a distinct Carnian age group. 
The youngest U–Pb data of Beltrán-Triviño et al. (2013) 
form just a diffuse tail of “pietra verde” age components. 
Our U–Pb ages from the Eisenkappel granite confirm its 
Carnian emplacement age. As these ages are missing from 
the siliciclastic formations studied by Beltrán-Triviño et al. 
(2013) we can assume that this pluton was not yet exhumed 
to the surface and eroded in the Triassic or its contribution 
in the sediment was strongly diluted due to its minor size.

Outside of eastern Southern Alps Carnian U–Pb ages or 
age components around 235–220 Ma were reported in the 
western Southern Alps (Crisci et al. 1984; Cassinis et al. 
2008; Zanetti et al. 2013), in the Dinarides (Neubauer et al. 
2014), in the Bükk Mountains (Haas et al. 2011; Kövér et al. 
2018) and in Asia Minor in clastic sediments and also in a 
rhyolitic–andesitic volcanic succession (e.g. Ustaömer et al. 
2016; Özdamar et al. 2013).

It is useful to consider the actinide content of the dated 
zircons as a kind of diagnostic “proxy” for provenance 
purposes. The U content and the Th/U ratio of the dated 
zircon crystals indicate an obvious difference between the 
Triassic volcanic rocks of the Transdanubian Range and the 
pilot samples from the Southern Alps (Fig. 9). Thus, the 
immediate derivation of the volcanic pebbles found in the 
Transdanubian Range the silicic formations of Predazzo and 
Eisenkappel is rather unlikely.

Conclusions

• The presence of dikes and the proximal volcaniclastic 
material indicates volcanic eruptions in the Transdanu-
bian Range in the Middle–Late Triassic.

• The composition of volcanic products covers a wide 
range from basalt to rhyolite. Although andesites are 
common, it is possible that the character of volcanism is 
bimodal, but the selective weathering/alteration biases 
the initial lithological variation. Volcanic textures are 
dominating, the intrusive and subvolcanic lithologies 
are scarce among the pebbles.

• The character of the igneous activity in the Transdanu-
bian Range is similar to the South Alpine one. The local 
half-graben basins developed coevally with the volcan-
ism indicating that the trigger of the magmatism was 
the extensional tectonics affecting the passive margin of 
the Adria plate; however, their geochemistry also shows 
active margin character.

• Zircon U–Pb ages were determined on andesite dikes, tuff 
layers and on variable volcanic fragments from different 
clastic sediments. The sample-mean ages are between 

Fig. 9  Actinide composition of the dated zircon samples: median 
of uranium concentration vs. median of Th/U ratio measured in sin-
gle crystals. Zircons from the Triassic volcanic formations from the 
Bakony Mountains and Buda Hills form a tight cluster, and it is obvi-
ous that the samples from the Southern Alps with acid-intermediate 
composition have different actinide element concentrations
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239 and 228 Ma. We could identify two age compo-
nents by the evaluation of the pooled single-grain ages 
determined on detrital zircons and on pebble-population 
samples. Thus the volcaniclastic formations record two 
major periods of activity of zircon-bearing volcanism 
at 238 Ma and around 229–228 Ma, indicating well the 
presence Carnian magmatic activity within the Trans-
danubian Range.

• The geochemical character of the dated zircons differs 
from the composition of the zircon pilot samples from 
the Dolomites and Carnic Alps, and that rules out the 
origin of the pebbles and cobbles from the sensu stricto 
South Alpine igneous formations.

• The new zircon U–Pb age of the Eisenkappel granite 
approves the formerly published titanite U–Pb age and 
thus the emplacement age can be considered also as Car-
nian.
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