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Based on new thermochronological data and 10Be-derived erosion rates from the southern part of the central
MenderesMassif (Aydın block) inwestern Turkey, we provide new insights into the tectonic evolution and land-
scape development of an area that undergoes active continental extension. Fission-track and (U-Th)/He data re-
veal that the footwall of the Büyük Menderes detachment experienced two episodes of enhanced cooling and
exhumation. Assuming an elevated geothermal gradient of ~50 °C/km, the first phase occurred with an average
rate of ~0.90 km/Myr in themiddleMiocene and the second one in the latest Miocene and Pliocenewith a rate of
~0.43 km/Myr. The exhumation rates between these two phases were lower and range from ~0.14 to
~0.24 km/Myr, depending on the distance to the detachment. Cosmogenic nuclide-based erosion rates for catch-
ments in the Aydın block range from ~0.1 to ~0.4 km/Myr. The similarity of the erosion rates on both sides of the
Aydın block (northern and southern flank) indicate that a rather symmetric erosion pattern has prevailed during
the Holocene. If these millennial erosion rates are representative on a million-year timescale they indicate that,
apart fromnormal faulting, erosion in the hangingwall of the BüyükMenderes detachment fault did also contrib-
ute to the exhumation of the metamorphic rocks.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Low-angle normal faults play a crucial role for the exhumation of
metamorphosed rocks from mid-crustal levels and usually form during
late-orogenic extension (e.g. Dewey, 1988). Extensional settings have
been intensively studied all over the world including the Basin-and-
Range Province (e.g. Wernicke et al., 1988; Lister and Davis, 1989), the
European Alps (e.g. Mancktelow, 1992; Selverstone, 1988; Campani et
al., 2010; Scharf et al., 2013a) and the Aegean region (e.g. Lee and
Lister, 1992; Gautier and Brun, 1994; Ring et al., 1999a; Brichau et al.,
2006; Grasemann et al., 2012). The rapid cooling of metamorphic
rocks exposed in these regions has commonly been interpreted to indi-
cate that erosion has played aminor role to rock exhumation. However,
the relative contribution of tectonic denudation and erosion to rock
ölfler).
exhumation has rarely been quantified (e.g. Brichau et al., 2008;
Buscher et al., 2013).

In the past decades, low-temperature thermochronology has proven
to be a powerful tool to determine the cooling and exhumation history
of rocks exhumed by detachment faulting (e.g. Dokka et al., 1986;
Fitzgerald et al., 1991; Axen et al., 2000; Armstrong et al., 2003;
Reiners and Ehlers, 2005). By using multiple thermochronometers
with different closure temperatures, cooling paths can be constrained
and converted into exhumation rates, provided the geo-thermal gradi-
ent can be satisfactorily approximated. To quantify rates of erosion, cos-
mogenic nuclides such as 10Be can be used (Lal, 1991; Granger et al.,
1996; von Blanckenburg, 2006). A combination of thesemethods allows
resolving both the relative contribution of tectonic denudation and ero-
sion to exhumation (e.g. Buscher et al., 2013). Since each method has a
typical timescale overwhich it integrates, themulti-method approach is
essential to gain quantitative insights into landscape evolution across
different timescales.
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We conducted this study in the central Menderes Massif, an active
extensional region in western Turkey (Fig. 1), which provides excellent
exposures, including spectacular detachment faults, and quartz-bearing
metamorphic rocks enabling the determination of 10Be-based erosion
rates. The metamorphic rocks of the central Menderes Massif are
bound by two E-W-striking low-angle detachment faults: the Gediz de-
tachment in the northern part of the Bozdağ block and the BüyükMen-
deres detachment in the southern part of the Aydın block (Fig. 1). Based
on structural investigations and a limited set of apatite fission track ages
it has been proposed that these two detachment faults were active dur-
ing bivergent extension,which controlled the exhumation of the central
MenderesMassif (Gessner et al., 2001a; Ring et al., 2003). A recent study
Fig. 1. (a) Geological map of the central Menderes Massif, western Turkey (compiled from Ca
Sözbilir, 2003; Gürer et al., 2009; Candan et al., 2011; Koralay et al., 2011; Sözbilir et al., 201
block and the eastern Küçük Menderes Graben. Location is shown in (a). Note the topograph
dipping Büyük Menderes detachment on its southern flank.
by Buscher et al. (2013) combined several thermochronometers and
cosmogenic nuclides to decipher the cooling and exhumation history
of the metamorphic rocks in the Boz Dağ region in more detail (Fig.
1a). In contrast, the exhumation pattern of the Aydın block is only
documented by a limited set of thermochronometers (Gessner et
al., 2001a). Hence, to understand the history of faulting and
bivergent extension in more detail, better temporal constraints on
the exhumation of the Aydın block as well as on the timing of the
Büyük Menderes detachment faulting are required. Here we present
new apatite and zircon (U-Th)/He and fission-track ages as well as
cosmogenic 10Be data to place constraints on the cooling and erosion
history of the Aydın block.
ndan et al., 1992; Hetzel et al., 1995a; Hetzel et al., 1998; Gessner et al., 2001b; Özer and
1; Gessner et al., 2013 and own field observations). (b) Swath profile across the Aydın
ic asymmetry of the Aydın block with the relative steep northern flank and the shallow-



587A. Wölfler et al. / Tectonophysics 717 (2017) 585–598
2. Geological setting of the central Menderes Massif

The Menderes Massif consists of a northern, central, and southern
submassif, which are separated by tectonically active E-W trending gra-
ben systems (e.g. Seyitoğlu and Scott, 1991; Yılmaz et al., 2000; Bozkurt
and Sözbilir, 2004). The centralMenderesMassif can be divided into the
northern Bozdağ and the southern Aydın block, which are separated by
the Küçük Menderes Graben and bound by the Gediz and Büyük Men-
deres grabens in the north and south, respectively (Fig. 1). The main
normal faults of the Gediz and Büyük Menderes grabens separate Neo-
gene sediments in the footwalls from Quaternary sediments in the
hanging walls (Çiftçi and Bozkurt, 2010; Gessner et al., 2013). Both gra-
ben-bounding faults are seismically active and have produced surface-
rupturing earthquakes in 1899 and 1969 (Schaffer, 1900; Ambraseys,
1971; Eyidoğan and Jackson, 1985). The Küçük Menderes Graben is
bound by steeply dipping normal faults, which were mainly active in
the Pliocene andQuaternary (Rojay et al., 2005; Sümer, 2015). Although
Miocene sediments are documented, the graben mainly developed in
the Pliocene and Quaternary but has not experienced asmuch as exten-
sion as recorded in the Gediz and BüyükMenderes grabens (Gessner et
al., 2001a; Gessner et al., 2013; Rojay et al., 2005).

The metamorphic rocks of the Menderes Massif consist of a nappe
pile that formed by thrusting and crustal thickening during the Eocene
(Şengör et al., 1984; Ring et al., 1999b; Ring et al., 2001; Regnier et al.,
2003; Gessner et al., 2013). Available isotopic age data indicate that
upper greenschist- to lower amphibolate-facies conditions occurred
during Alpine metamorphism in late Eocene and Oligocene (Satir and
Friedrichsen, 1986; Hetzel and Reischmann, 1996; Lips et al., 2001;
Ring et al., 2003; Schmidt et al., 2015), although some rock units also ex-
perienced older, pre-Alpine phases of metamorphism (e.g. Bozkurt and
Oberhänsli, 2001; Candan et al., 2001; Candan et al., 2011; Koralay,
2015). Here we use the tectonic subdivision of the Menderes Massif
into four nappes, which was proposed by Gessner et al. (1998) and
Ring et al. (1999b). According to these authors the nappe stack includes,
from top to bottom, (1) the Selimiye nappe, (2) the Çine nappe, (3) the
Bozdağ nappe, and (4) the Bayındır nappe (Figs. 1, 2). The Selimiye
nappemainly contains Paleozoic metapelites, metabasites, andmarbles
(e.g. Loos and Reischmann, 1999; Regnier et al., 2003; Gessner et al.,
2004). The Çine nappe is made up of orthogneisses with intrusion
ages of 560–530 Ma, metagranites, pelitic gneisses, and minor amphib-
olites and eclogites (e.g. Hetzel and Reischmann, 1996; Oberhänsli et al.,
1997; Hetzel et al., 1998; Gessner et al., 2004; Zlatkin et al., 2012). The
Bozdağ nappe mainly consists of mica schists and minor amounts of
marbles and amphibolites (e.g. Koralay et al., 2001; Gessner et al.,
2004; Candan et al., 2011). The metamorphic rocks of the Çine and
Bozdağ nappes have Precambrian protolith ages (e.g. Candan et al.,
2011; Gessner et al., 2001b; Gessner et al., 2004) and experienced
high-grade metamorphism in Precambrian times (e.g. Bozkurt and
Oberhänsli, 2001; Candan et al., 2001; Candan et al., 2011; Koralay,
2015). The Bayındır nappe contains mica schists, quarzites, phyllites,
and marbles that were affected by greenschist-facies metamorphism
in the Eocene (Lips et al., 2001; Özer and Sözbilir, 2003; Çemen et al.,
2006). Fossils discovered in these marbles near the Büyük Menderes
Graben document a Cretaceous depositional age and subsequent meta-
morphism during the Alpine orogenesis (Özer and Sözbilir, 2003).

Previous studies based on low-temperature thermochronology re-
vealed a two-stage cooling history of the Menderes Massif (Gessner et
al., 2001a; Ring et al., 2003; Ișik et al., 2004; Thomson and Ring, 2006).
The first stage occurred in the late Oligocene and early Miocene, when
rocks of the northern and southern submassifs cooled to near-surface
temperatures of ~110 °C (Ring et al., 2003; Thomson and Ring, 2006).
The second stage is related to the late Miocene to Pliocene exhumation
of the central Menderes Massif, which was driven by N-S to NNE-SSW
directed extension along the Gediz and Büyük Menderes detachment
faults (Fig. 1a) (e.g. Hetzel et al., 1995a, 1995b; Emre and Sözbilir,
1997; Gessner et al., 2001a; Bozkurt and Sözbilir, 2004).
The Gediz detachment dips about 15° to the NNE with a stretching
lineation in the underlying mylonites plunging gently to the NNE
(Hetzel et al., 1995a; Emre, 1996; Ișik et al., 2003). The detachment
was active from the middle Miocene until the Pliocene or possibly the
early Quaternary (Buscher et al., 2013). The Büyük Menderes detach-
ment is exposed along the southern flank of the central Menderes Mas-
sif (Figs. 1–3) as a mainly cataclastic shear zone with a dip of 0–15° and
a top-to-the-S to SSW sense of movement (Gessner et al., 2001a) (Fig.
2c, d). So far, only a few apatite fission-track ages document early Mio-
cene cooling of hanging wall units and late Miocene cooling of footwall
units of the Büyük Menderes detachment, respectively (Gessner et al.,
2001a; Ring et al., 2003).

The study area is located in the Aydın block, which exposes all four
metamorphic nappes described above (Figs. 1, 2). The Aydın block is
characterized by a pronounced topographic asymmetry, with a steep
northern flank facing the KüçükMenderes Graben and a gently-dipping
southern flank dominated by the Büyük Menderes detachment (Fig.
1b). The metamorphic rocks are overlain by faulted and northward
tilted Neogene fluvio-lacustrine sediments (Figs. 1, 2) with northward
dips of 15° to 30° (Fig. 2c). The oldest strata of the Neogene sediments
are early to middle Miocene in age (Seyitoğlu and Scott, 1991; Sen
and Seyitoğlu, 2009). The sediments are locally folded and overlain by
undeformed Pliocene to Pleistocene sediments (Bozkurt, 2000, 2001).
Historical earthquakes and geomorphological indicators such as well-
preserved fault scarps document that the steep normal faults bounding
the BüyükMenderes Graben to the north are still active (Fig. 2; Schaffer,
1900; Gürer et al., 2009). Active normal faulting on these steep faults is
locally accompanied by hydrothermal activity and hot springs with
temperatures of up to 100 °C (Karamanderesi and Helvacı, 2003).

3. Methods, sampling and sample preparation

3.1. Zircon and apatite fission-track analysis

We used the zircon and apatite fission-track (ZFT, AFT) methods,
whose temperature sensitivity intervals are referred to as ZFT and AFT
partial annealing zones, ranging from380 to 190 °C and 120 to 60 °C, re-
spectively (e.g. Wagner and van den Haute, 1992; Green et al., 1986;
Rahn et al., 2004). Although closure temperatures can vary depending
on factors such as cooling rate, chemistry, and accumulated radiation
damage, typical closure temperatures for ZFT and AFT samples are
~240 °C and ~110 °C, respectively (Wagner and van den Haute, 1992;
Gleadow and Duddy, 1981).

For fission-track analysis, we collected a total of 18 samples. Sample
locations, lithologies, and structural positions are given in Fig. 2 and
Table 1. Twelve samples are from the southern flank of the Aydın
block (14M30–14M41). Eight of these samples are from the footwall
of the Büyük Menderes detachment while the remaining four are from
small augen gneiss klippen (i.e. remnants of the Çine nappe) in the
hanging wall (Table 1). Five samples were taken from the northern
flank of the Aydın block and one (14M23) from an augen gneiss unit ex-
posed in the eastern Küçük Menderes Graben (Fig. 2a).

Zircon and apatite grains were separated using conventional mag-
netic and heavy liquid separation techniques and embedded in PDA Tef-
lon™ and epoxy, respectively, grounded and polished. Zircon mounts
were etched in a KOH-NaOH eutectic melt at 215 °C (Zaun and
Wagner, 1985); the apatites were etched with 5 M HNO3 for 20 s at
21 °C (Donelick et al., 1999). The samples were irradiated with thermal
neutrons at the FRM-II reactor facility in Garching (Technical University
Munich, Germany). Fission-track counting was carried out with an
Olympus BX-51microscope under 1000×magnification at the Institute
of Geology in Hannover. We used the external detector method
(Gleadow, 1981) with uranium-free muscovite sheets and the zeta cal-
ibration approach (e.g. Naeser, 1978; Hurford and Green, 1983) with
dosimeter glass IRMM-540R and IRMM-541 and Durango apatite and
Fish Canyon zircon age standards. For the assessment of annealing



Fig. 2. (a, b) Geologicalmap and shaded relief image of the study area north of Köşk. Note that both figures cover exactly the same region. The locations of the thermochronological samples
are shown in the geological map (note that the first two numbers of the sample IDs (i.e. 14) are omitted for clarity). Rectangles with letters A and B denote the trace of the profile in Fig. 5.
Bold letters inwhite circles (c andd) refer to the cross sections depicted below. Themap is based on Candan et al., 1992; Emre and Sözbilir, 1997;Gürer et al., 2009;Hetzel et al., 1998; Özer
and Sözbilir, 2003; Emre and Sözbilir, 2007; Candan et al., 2011; Koralay et al., 2011 and own field observations. The sampling sites for 10Be-derived erosion rates and the respective
catchments are indicated in the shaded-relief image. The yellow symbol near sample 14T15 indicates the view shown in the field photograph of Fig. 3. (c) N-S profile across the Büyük
Menderes detachment. (d) Cross-section showing the flat-lying Büyük Menderes detachment. Sample 14M31 is from augen gneisses that occur in the hanging wall of the Büyük
Menderes detachment.

Fig. 3. Photograph of the Büyük Menderes detachment (for location see Fig. 2b). Black
arrows delineate the detachment fault. Coordinates of viewpoint: 37.9584°N,
28.0000°E.
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kinetics in apatites we used Dpar values (mean diameter of etch figures
on prismatic surfaces of apatite parallel to the crystallographic c-axis)
(Burtner et al., 1994). The mean track lengths from horizontal confined
tracks were corrected for c-axis orientation (Donelick et al., 1999). Fis-
sion-track ages were calculated with the TRACKKEY software version
4.2 (Dunkl, 2002) and are reported in Tables 2 and 3 with 1σ errors.

3.2. Zircon and apatite (U-Th)/He analysis

Zircon and apatite (U-Th)/He thermochronology (ZHe, AHe) is
based on the accumulation of radiogenic helium produced by the α-



Table 1
Location, lithology, and structural position of samples for low-temperature thermochronology.

Sample Latitude (°N)
(WGS 84)

Longitude (°E)
(WGS 84)

Elevation
(m)

Lithology Structural position Thermochronometers applied

14M23 38.1841 28.0610 135 Augen gneiss Çine nappe AHe, AFT, ZHe
14M24 38.0392 28.0265 1600 Paragneiss Bozdağ nappe, footwall of Büyük Menderes detachment AFT, ZHe
14M25 38.0438 28.0186 1187 Paragneiss Bozdağ nappe, footwall of Büyük Menderes detachment AFT, ZHe
14M26 38.0361 28.0066 887 Paragneiss Bozdağ nappe, footwall of Büyük Menderes detachment AFT, ZHe
14M27 38.0814 27.9482 556 Augen gneiss Çine nappe AFT, ZHe
14M29 38.1207 27.9806 177 Augen gneiss Çine nappe AHe, AFT, ZHe, ZFT
14M30 37.9553 28.0443 671 Augen gneiss Çine nappe, hanging wall of Büyük Menderes detachment AFT, ZHe
14M31 37.9227 28.0861 829 Augen gneiss Çine nappe, hanging wall of Büyük Menderes detachment AHe, AFT, ZHe, ZFT
14M32 37.9241 28.0864 830 Mica schist Bayındır nappe, footwall of Büyük Menderes detachment AFT, ZHe, ZFT
14M33 37.9310 28.0876 849 Mica schist Bayındır nappe, footwall of Büyük Menderes detachment AFT
14M34 37.9387 28.0884 831 Mica schist Bayındır nappe, footwall of Büyük Menderes detachment AHe, AFT, ZHe
14M35 37.9537 28.1034 766 Mica schist Bayındır nappe, footwall of Büyük Menderes detachment AHe, AFT, ZHe
14M36 37.9721 27.9892 846 Mica schist Bayındır nappe, footwall of Büyük Menderes detachment AFT, ZHe, ZFT
14M37 37.9803 27.9663 1087 Mica schist Bayındır nappe, footwall of Büyük Menderes detachment AHe, AFT, ZHe
14M38 37.9892 27.9641 1167 Mica schist Bayındır nappe, footwall of Büyük Menderes detachment AFT
14M39 37.8846 28.0630 287 Augen gneiss Çine nappe, hanging wall of Büyük Menderes detachment AFT, ZHe
14M40 37.8862 28.0476 181 Augen gneiss Çine nappe, hanging wall of Büyük Menderes detachment AHe, AFT
14M41 37.9682 28.0899 406 Mica schist Bayındır nappe, footwall of Büyük Menderes detachment AFT, ZHe

589A. Wölfler et al. / Tectonophysics 717 (2017) 585–598
decay of 238U, 235U, 232Th, and 147Sm (e.g. Zeitler et al., 1987; Lippolt et
al., 1994; Farley, 2002; Reiners et al., 2003). The temperature intervals at
which helium diffusion approaches production (by alpha decay) is re-
ferred to as zircon and apatite helium partial retention zones with tem-
perature ranges from 190 to 120 °C and 80 to 60 °C, respectively (Wolf
et al., 1996, 1998; Farley, 2000; Reiners et al., 2003). The typical closure
temperatures are 180 °C and 70 °C for the ZHe and AHe systems, respec-
tively (Ehlers and Farley, 2003; Reiners et al., 2004; Reiners and
Brandon, 2006; Flowers et al., 2007; Herman et al., 2007; Guenthner
et al., 2013).

We employed (U-Th)/He dating on samples that yielded apatites
and zircons of sufficient quality (Table 1). Apatite and zircon crystals
were hand-picked using a stereo- and polarizingmicroscope and select-
ed under 200× magnification following the selection criteria of Farley
(2002) and Reiners (2005). The dimension of the selected crystals was
measured to determine alpha-ejection correction factors (Farley et al.,
1996). Single crystalswere loaded into pre-cleaned Pt tubes for He anal-
ysis carried out at the GÖochron Laboratory at the University of
Göttingen (Germany). Extraction of helium from crystals was per-
formed by heating the encapsulated grains in vacuum using an IR
laser. The extracted gas was purified by an SAES Ti-Zr getter and the
He contentwasmeasuredby aHidenHal-3F/PIC triple-filter quadrupole
mass spectrometer. For measurements of the alpha-emitting elements
U, Th, and Sm, the crystals were dissolved and spiked with calibrated
233U, 230Th, and 149Sm solutions. Zircons were dissolved in Teflon
bombs with 48% HF and 65% HNO3 at 220 °C for five days. Apatites
were dissolved in 2% ultrapure HNO3 (+0.05% HF) in an ultrasonic
bath. The actinide and Smconcentrationsweremeasured by inductively
coupled plasma mass spectrometry using the isotope dilution method
with a Perkin Elmer Elan DRC II system equipped with an APEX micro-
flow nebulizer. Errors for the single-grain ZHe and AHe analyses are
Table 2
Results of zircon fission track analyses.

Sample Number of grains ρs Ns ρi Ni

14M29 20 75.474 717 92.737 881
14M31 20 75.225 835 96.757 1074
14M32 20 75.714 583 111.299 857
14M36 20 38.485 508 53.864 711

ρs (ρi) is the spontaneous (induced) track density (105 tracks/cm2); Ns (Ni) is thenumber of cou
is the number of tracks counted on the dosimeter; P(χ2) is the probability of obtaining a Chi-sq
were calculated using the zeta calibration method (Hurford and Green, 1983), glass dosimet
standards.
attributed to uncertainties in the He, U, Th, and Sm measurements and
the estimated uncertainty of the Ft correction factor. The zircon and ap-
atite (U-Th)/He ages were calculated as unweighted mean ages from
the single-grain ages of each sample and are reported in Tables 4 and
5 with an uncertainty of 2 standard errors.
3.3. Catchment-wide erosion rates from cosmogenic 10Be

Spatially averaged erosion rates of river catchments can be deter-
mined from the 10Be concentration in sand samples taken from active
streams (e.g. Granger et al., 1996; von Blanckenburg, 2006). This ap-
proach assumes that the sediment in the stream channels is well
mixed, that erosion is uniform through time, and that nuclide produc-
tion in the catchment equals the outflux of nuclides via erosion and ra-
dioactive decay (e.g. Bierman and Steig, 1996).

To quantify spatially integrated erosion rates in the study area, we
took stream sediment samples at the outlets of eight catchments that
range in size between 1 and 102 km2 (Fig. 2). Three samples were col-
lected from streams draining the south-facing slope of the Aydın
block, whereas three samples were taken from catchments that drain
northwards into the Küçük Menderes graben (Fig. 2). The bedrock in
these six catchments is dominated by greenschist- to amphibolite-facies
mica schists, which constitute the main lithology in the Bozdağ and
Bayındır nappes in this part of the Aydın block. We note that the three
southern samples were taken relatively far upstream along the respec-
tive rivers to ensure that rocks of the Çine nappe are absent in these
catchments. We also collected two samples from small ephemeral
streams at the eastern end of the Küçük Menderes Graben (Fig. 2).
These two catchments are entirely located in coarse-grained augen
gneisses of the Çine nappe. In general, the position of all sampling
ρd Nd P(χ2)
(%)

Dispersion Central age
±1σ (Ma)

U
(ppm)

6.815 2583 10 0.13 30.3 ± 2.1 607
6.814 2583 8 0.13 29.0 ± 1.9 585
6.814 2583 61 0.04 25.3 ± 1.7 689
6.812 2583 0 0.32 26.4 ± 2.6 349

nted spontaneous (induced) tracks; ρd is the dosimeter track density (105 tracks/cm2); Nd
uare value (χ2) for n degree of freedom (where n is the number of crystals minus 1); ages
er IRMM541, and a zeta value of 109 ± 3 a/cm2 calculated with Fish Canyon Tuff zircon



Table 3
Results of apatite fission track analyses.

Sample Number of grains ρs Ns ρi Ni ρd Nd P(χ2)
(%)

Dispersion Central age
±1σ (Ma)

U
(ppm)

Mean track
length (μm)

SD
(μm)

Number of track
lengths measured

Dpar
(μm)

14M23* 20 2.587 52 15.473 311 8.3118 3032 26 0 17.7 ± 2.8 26 13.78 1.20 34 1.56
14M24* 20 1.129 14 10.081 125 8.2999 3032 85 0 11.8 ± 3.4 18 12.98 0.88 50 1.57
14M25* 20 1.176 18 9.477 145 8.1326 3032 12 0.32 13.1 ± 3.6 15 1.79
14M26 20 2.665 105 20.787 819 8.276 3032 99 0 12.4 ± 1.4 37 1.68
14M27* 20 4.135 43 24.135 251 8.264 3032 90 0 18.0 ± 3.1 32 13.26 1.12 23 1.60
14M29* 20 3.254 82 17.143 432 8.2541 3032 0.11 0.56 21.1 ± 3.8 27 13.96 1.20 53 1.67
14M30* 20 2.586 30 13.621 158 8.2401 3032 85 0 19.9 ± 4.0 22 13.56 1.18 22 1.67
14M31* 15 2.887 41 17.042 242 8.2282 3032 50 0 17.8 ± 3.1 31 13.66 1.24 43 1.73
14M32* 15 0.655 11 16.190 272 8.2162 3032 77 0 4.2 ± 1.3 25 1.56
14M33 4 0.635 4 14.603 92 8.2034 3032 78 0 4.2 ± 2.1 28 1.57
14M34 17 0.512 19 11.402 423 8.1923 3032 2 0.67 4.8 ± 1.4 20 1.61
14M35* 11 0.788 7 15.444 139 8.1684 3032 50 0 5.2 ± 2.0 27 1.55
14M36 20 1.395 47 23.383 788 8.1565 3032 86 0 5.7 ± 0.9 41 1.53
14M37 20 1.762 77 12.586 550 8.145 3032 2 0.42 14.7 ± 2.4 21 13.09 1.11 16 1.64
14M38* 15 1.772 14 11.772 93 7.972 3032 99 0 15.3 ± 4.4 19 13.33 1.13 21 1.62
14M39 20 1.869 37 9.949 197 8.12 3032 9 0.54 18.9 ± 4.2 21 13.44 1.22 18 1.58
14M40* 20 0.649 32 2.677 132 8.1087 3032 12 0.61 22.8 ± 5.8 4 13.28 0.89 11 1.66
14M41 11 0.847 16 18.201 344 8.097 3032 29 0 4.4 ± 1.1 33 1.54

ρs (ρi) is the spontaneous (induced) track density (105 tracks/cm2); Ns (Ni) is thenumber of counted spontaneous (induced) tracks; ρd is the dosimeter track density (105 tracks/cm2); Nd
is the number of tracks counted on thedosimeter; P(χ2) is the probability of obtaining Chi-square value (χ2) for n degree of freedom(where n is the number of crystalsminus 1); ageswere
calculated using the zeta calibrationmethod (Hurford andGreen, 1983), glass dosimeter IRMM540, and zeta values of 235±9 a/cm2 (sampleswithout asterisk) and 255±9 a/cm2 (sam-
ples with asterisk) calculated with Durango apatite standards.
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sites, either at the boundary between the metamorphic rocks and the
Neogene or Quaternary sediments or within the metamorphic rocks,
ensures that the sediment source area of all samples encompasses
only metamorphic rocks.

The 250–500 μmgrain size fractions of the stream sediments obtain-
ed by sieving in the field were split into a magnetic and a non-magnetic
fraction using a Frantz magnetic separator. The subsequent leaching
procedure consisted of one etching step in 6MHCl at 80 °C, four etching
steps in dilute HF/HNO3 in a heated ultrasonic bath (Kohl and
Nishiizumi, 1992), and two alternating etching steps in aqua regia and
8 M HF to obtain pure quartz (Goethals et al., 2009). For beryllium ex-
traction, ~0.3 mg of Be carrier was added to each sample. Following
complete dissolution of quartz in HF (40%), samples were redissolved
and converted into chloride form using 6MHCl. Berylliumwas separat-
ed by successive anion and cation exchange columns andprecipitated as
Be(OH)2 at pH 8–9. Following the transformation to BeO at 1000 °C and
target preparation for accelerator mass spectrometry (AMS), 10Be was
analyzed at the compact AMS facility “TANDY” of the ETH Zurich
(Christl et al., 2013). The measured 10Be/9Be ratios are normalized to
the secondary ETH standard S2007N with a nominal 10Be/9Be ratio of
28.1 × 10−12 (Kubik and Christl, 2010), considering the 10Be half-life
of 1.387 ± 0.012 Ma (Chmeleff et al., 2010; Korschinek et al., 2010).
The secondary standard has been calibrated to the primary standard
ICN 01-5-1 (Nishiizumi et al., 2007; Kubik and Christl, 2010).

Catchment-wide erosion rates were calculated from the blank-
corrected 10Be concentrations with the CRONUS-Earth online calculator
(Balco et al., 2008; version 2.2; http://hess.ess.washington.edu) using
the time-invariant production rate scaling model of Lal (1991) and
Stone (2000) (Table 6). We note that the results of four samples
(14T7, −8, −13 and −14) have been included in a manuscript that
focusses on the lifetimes of water reservoirs in the Menderes Massif
(Heineke et al., manuscript in revision). To account for the shielding of
cosmic rays by the surrounding topography, a shielding factor was cal-
culated for each catchment using the MATLAB script provided by Greg
Balco (http://depts.washington.edu/cosmolab/shielding.m) and a digi-
tal elevation model with a horizontal resolution of 30 m (ASTER
GDEM; http://www.gdem.aster.ersdac.or.jp). Erosion rates determined
with cosmogenic nuclides approximately integrate over the time inter-
val needed to remove a ~60 cm thick layer of bedrock from the surface:
commonly a period of 103–105 years (e.g. Granger et al., 1996).
4. Results

4.1. Results from fission-track and (U-Th)/He analysis

The results from low-temperature thermochronology (Tables 2–5)
reveal distinct ages for the rock samples from the footwall and hanging
wall of the BüyükMenderes detachment fault, respectively (Fig. 4). The
youngest ages are obtained from samples located below the Büyük
Menderes detachment in the southern part of the study area (samples
14M32, −33, −34, −35, −36, −41). This group of samples yield AFT
ages from 5.7 ± 0.9 to 4.2 ± 1.3 Ma and two AHe ages of 3.0 ±
0.3 Ma, respectively (Figs. 4, 5). The ZHe and ZFT ages of these samples
are significantly older and range from 15.7 ± 3.6 to 12.2 ± 0.7 Ma and
from26.4±2.6 to 25.3±1.7Ma, respectively (Figs. 4, 5). A second sam-
ple group is defined by footwall samples from the central and northern
part of the Aydın block (14M24, −25, −26, −37, −38). AFT and ZHe
ages of these samples range from 15.3 ± 4.4 to 11.8 ± 3.4 Ma and
from 16.5 ± 0.8 to 13.0 ± 0.8 Ma, respectively. The third group of sam-
ples is defined by the oldest ages and comprises four augen gneiss sam-
ples from thehangingwall of the BüyükMenderes detachment (14M30,
−31, −39, −40), one sample from the northern flank of the Aydın
block (14M27), and two samples of augen gneisses in the Küçük Men-
deres Graben (14M23, −29). The two ZFT ages from this group are
30.3 ± 2.1 Ma and 29.0 ± 1.9 Ma, whereas the ZHe and AFT ages
range from 25.7 ± 0.9 to 20.0 ± 1.6 Ma and from 22.8 ± 5.8 to 17.7
± 2.8 Ma, respectively (black symbols in Fig. 5). The augen gneisses
from the Küçük Menderes Graben yield AHe ages of 21.9 ± 1.2 Ma
and 17.5 ± 1.7 Ma. In contrast, two samples from the hanging wall of
the Büyük Menderes detachment (14M31, −40) yield AHe ages of 1.6
± 0.2 and 0.5 ± 0.1 Ma (Fig. 5).

The apatite samples from all three age groups are characterized by
unimodal track length distributions and relatively long mean track
lengths (13.0 to 13.8 μm, with standard deviations of 0.9 to 1.2 μm)
(Table 3). The track length data suggest a moderately fast cooling
through the apatite partial annealing zone in the Miocene to Pliocene.
Mean Dpar values of the samples range from 1.53 to 1.79 μm (Table
3), pointing to a homogeneous chemical composition of the samples,
typical for fluorine-apatite.

By using the closure temperatures mentioned in Section 3 (i.e. ZFT:
240 °C, ZHe: 180 °C, AFT: 110 °C, AHe: 70 °C) and amean annual surface

http://hess.ess.washington.edu
http://depts.washington.edu/cosmolab/shielding.m
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Table 4
Results of zircon (U-Th)/He geochronology.

Sample Aliq. He 1σ 238U 1σ Conc. 232Th 1σ Conc. Th/U
ratio

Sm 1σ Conc. Ejection
correction

Uncorr.
age

FT-corr.
age

2σ Sample
age

2se

Vol. Mass Mass Mass

(10−9

cm3)
(%) (ng) (%) (ppm) (ng) (%) (ppm) (ng) (%) (ppm) (Ma) (Ma) (Ma) (Ma) (Ma)

14M23 #1 2.105 1.2 1.132 1.8 499 0.134 2.4 59 0.12 0.031 7.6 14 0.68 15.0 22.02 2.30 21.8 0.3
#2 4.243 1.1 2.340 1.8 829 0.103 2.4 37 0.04 0.005 18.5 2 0.69 14.9 21.53 2.19

14M24 #1 1.551 1.2 1.128 1.8 268 0.410 2.4 98 0.36 0.010 12.7 2 0.80 10.5 13.10 0.95 13.9 1.3
#2 1.081 1.2 0.850 1.8 276 0.345 2.4 112 0.41 0.012 13.2 4 0.72 9.6 13.34 1.25
#3 0.836 1.3 0.546 1.8 149 0.373 2.4 101 0.68 0.006 18.0 2 0.71 10.9 15.38 1.48

14M25 #1 4.983 0.8 3.415 1.8 404 1.977 2.4 234 0.58 0.042 9.0 5 0.82 10.6 12.95 0.84 13.0 0.8
14M26 #1 0.852 1.0 0.559 1.8 248 0.102 2.4 45 0.18 0.008 15.4 4 0.71 12.10 17.04 1.63 16.5 0.8

#2 2.999 0.9 1.674 1.8 262 1.063 2.4 166 0.64 0.042 10.5 7 0.81 12.89 15.91 1.07
14M27 #1 7.941 0.9 3.845 1.8 258 0.771 2.4 52 0.20 0.039 10.8 3 0.83 16.32 19.66 1.24 19.9 0.2

#2 2.554 0.9 1.231 1.8 229 0.615 2.4 114 0.50 0.039 11.5 7 0.76 15.35 20.20 1.63
#3 2.108 0.9 1.099 1.8 277 0.163 2.4 41 0.15 0.014 14.7 4 0.77 15.34 19.92 1.57

14M29 #1 19.300 0.8 9.024 1.8 1756 1.307 2.4 254 0.14 0.016 19.0 3 0.84 17.11 20.37 1.24 24.6 2.1
#2 7.266 0.8 3.088 1.8 652 0.264 2.4 56 0.09 0.040 11.3 8 0.72 19.08 26.51 2.44
#3 9.940 0.9 3.583 1.8 377 0.617 2.4 65 0.17 0.067 10.1 7 0.82 22.05 26.89 1.77

14M30 #1 3.482 1.2 1.544 1.8 367 0.142 2.4 34 0.09 0.006 20.6 1 0.71 18.3 25.73 2.48 25.7 0.9
#2 2.879 1.2 1.186 1.8 299 0.113 2.4 28 0.09 0.004 22.9 1 0.74 19.6 26.55 2.35
#3 13.137 1.1 5.219 1.8 467 1.204 2.4 108 0.23 0.091 5.3 8 0.80 19.7 24.69 1.78

14M31 #1 1.476 1.2 0.812 1.8 231 0.180 2.4 51 0.22 0.013 10.2 4 0.76 14.3 18.80 1.56 20.0 1.6
#2 8.919 1.1 4.403 1.8 737 0.580 2.4 97 0.13 0.108 5.0 18 0.77 16.3 21.11 1.69

14M32 #1 2.982 0.9 2.494 1.8 1012 0.733 2.4 298 0.29 0.101 9.6 41 0.69 9.26 13.42 1.34 14.5 0.6
#2 0.328 1.2 0.199 1.9 55 0.227 2.4 63 1.14 0.012 13.3 3 0.75 10.75 14.34 1.21
#3 0.724 1.1 0.529 1.8 235 0.081 2.5 36 0.15 0.004 22.9 2 0.70 10.94 15.62 1.54

14M34 #1 5.532 0.8 2.304 1.8 594 3.831 2.4 988 1.66 0.028 11.5 7 0.77 14.25 18.51 1.42 15.5 1.6
#2 0.581 1.1 0.439 1.8 72 0.106 2.4 17 0.24 0.010 15.8 2 0.70 10.37 14.81 1.46
#3 0.402 1.1 0.332 1.9 166 0.130 2.4 65 0.39 0.006 22.0 3 0.69 9.16 13.27 1.34

14M35 #1 1.398 0.9 0.944 1.8 248 0.849 2.4 223 0.90 0.241 9.6 63 0.77 10.09 13.10 1.01 15.7 3.6
#2 3.577 0.9 1.806 1.8 340 1.261 2.4 238 0.70 0.216 9.6 41 0.77 14.06 18.26 1.41
#3 1.636 0.9 0.753 1.8 604 0.260 2.4 208 0.34 0.025 11.3 20 0.64 16.61 25.96* 2.97

14M36 #1 0.429 1.1 0.314 1.9 207 0.155 2.4 102 0.49 0.011 14.2 7 0.67 10.13 15.12 1.62 15.3 1.1
#2 1.622 0.9 1.170 1.8 231 0.396 2.4 78 0.34 0.013 13.6 3 0.79 10.63 13.46 0.99
#3 2.672 0.9 1.409 1.8 200 0.757 2.4 108 0.54 0.035 10.9 5 0.80 13.92 17.40 1.22

14M37 #1 0.936 1.0 0.636 1.8 195 0.325 2.4 100 0.51 0.029 11.3 9 0.76 10.87 14.30 1.16 14.8 0.3
#2 1.546 0.9 1.151 1.8 553 0.359 2.4 172 0.31 0.004 22.2 2 0.70 10.35 14.79 1.44
#3 2.378 0.9 1.691 1.8 529 0.297 2.4 93 0.18 0.005 20.4 2 0.73 11.18 15.32 1.37

14M39 #1 1.810 1.3 1.132 1.8 266 0.517 2.4 121 0.46 0.101 5.6 24 0.71 11.9 16.81 1.62 21.0 5.9
#2 4.275 1.2 1.802 1.8 366 0.851 2.4 173 0.47 0.059 6.2 12 0.70 17.7 25.22 2.48

14M41 #1 3.125 1.2 2.314 1.8 286 0.613 2.4 76 0.27 0.006 16.4 1 0.81 10.5 12.99 0.91 12.2 0.7
#2 0.909 1.3 0.810 1.8 258 0.228 2.4 73 0.28 0.003 25.8 1 0.73 8.7 11.93 1.09
#3 1.773 0.9 1.576 1.8 422 0.484 2.4 129 0.31 0.035 10.5 9 0.74 8.7 11.74 1.02

Ejection correction (Ft): correction factor for alpha-ejection (according to Farley et al., 1996 and Hourigan et al., 2005). Uncertainty of the single-grain ages includes both the analytical
uncertainty and the estimated uncertainty of the ejection correction. Sample age is the unweighted average age of all Ft-corrected (U-Th)/He ages. Results from aliquots marked with as-
terisk are not considered in the calculation of the sample age.
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temperature of 10 °C, we determined exhumation rates from the
cooling ages ofmineral pairs.We calculated the exhumation rates by di-
viding cooling rates with an estimated value for the paleo-geothermal
gradient. At present, the average surface heat flow of ~110 mW/m2 in
the Menderes Massif (Ilkişik, 1995) and heat flowmodels for the conti-
nental crust (Chapman and Furlong, 1992) indicate an average geother-
mal gradient of about 40 °C/km. During periods of extension however,
the geothermal gradient may have increased to values of 50 °C/km or
more (cf. Foster et al., 1991; Lund et al., 1993). For instance, Foster et
al. (1991) calculated a geo-thermal gradient of 50 ± 20 °C/km for the
Mojave extensional belt and Blackwell (1983) reported a high geother-
mal gradient of about 50 °C/km in the extensional Basin-and-Range
Province. Based on geophysical data, the geothermal gradient for west-
ern Anatolia was calculated to range between 50 and 70 °C/km (Dolmaz
et al., 2005). Thermal-kinematic modelling of low-angle normal faults
indicates that within a few kilometres around the fault, the geothermal
gradients in the hangingwall as well as the footwall are spatially invari-
ant (e.g. Grasemann and Dunkl, 2003). To account for the above men-
tioned uncertainties of the paleo-geothermal gradient, we calculated
exhumation rates for three different geothermal gradients of 30, 50,
and 70 °C/km for the three sample groups defined above (Fig. 6a–i).
For each of these three scenarios alternating phases of relatively fast
and slow exhumation can be recognized and will be discussed in
Section 5.1.
4.2. Results from cosmogenic 10Be analysis

The erosion rates determined for the eight catchments in the Aydın
block and the KüçükMenderes Graben range from ~50 to ~400mm/kyr
and are shown in Fig. 4. Blank-corrected 10Be concentrations of the sam-
ples, production rates due to spallation and muons, and spatially inte-
grated erosion rates for the respective catchments are presented in
Table 6. The lowest erosion rates of 54 ± 5 and 64± 6m/Myr were ob-
tained for the two small catchments that are entirely located in augen
gneisses of the Çine nappe at the eastern end of the Küçük Menderes
Graben. These rates can be explained by the low erodibility of the
coarse-grained orthogneisses and the rather low mean hillslope angles
of the two catchments of ~16° and ~18°, respectively (Table 6). The sed-
iment samples from the six larger catchments in theAydın block yielded
higher, albeit quite variable erosion rates between 84 ± 8 and 390 ±
39 m/Myr. The faster erosion documented for these catchments likely
reflects the higher erodibility of the fragilemica schists and the general-
ly steeper hillslopes of these catchments, which have mean hillslope



Table 5
Results of apatite (U-Th)/He geochronology.

Sample Aliq. He 1σ 238U 1σ Conc. 232Th 1σ Th/U
ratio

Sm 1σ Conc. Ejection
correction

Uncorr.
age

FT-corr.
age

2σ Sample
age

2se

Vol. Mass Mass Conc. Mass

(10−9 cm3) (%) (ng) (%) (ppm) (ng) (%) (ppm) (ng) (%) (ppm) (Ma) (Ma) (Ma) (Ma) (Ma)

14M23 #1 0.032 3.3 0.019 3.4 3.9 0.004 4.0 0.9 0.23 0.680 6.4 139 0.73 10.25 14.04 1.67 17.5 1.7
#2 0.014 4.8 0.006 8.5 2.9 0.002 5.7 1.1 0.37 0.263 6.7 121 0.65 12.64 19.44 3.60
#3 0.047 2.6 0.022 3.0 4.2 0.006 3.7 1.1 0.26 0.861 6.0 161 0.66 12.55 19.02 2.37

14M29 #1 0.295 1.2 0.120 1.9 14.4 0.022 2.9 2.7 0.19 1.998 5.8 240 0.80 17.19 21.49 1.56 21.9 1.2
#2 0.423 1.1 0.163 1.8 17.6 0.031 2.7 3.3 0.19 2.204 5.8 238 0.77 18.59 24.15 1.92
#3 0.365 1.2 0.153 1.8 14.1 0.048 2.6 4.4 0.31 2.543 5.8 235 0.81 16.31 20.13 1.41

14M31 #1 0.131 1.5 0.615 1.8 56.5 0.277 2.4 25.4 0.45 0.650 6.2 60 0.81 1.58 1.95 0.14 1.6 0.2
#2 0.163 1.5 1.190 1.8 79.2 0.036 2.7 2.4 0.03 0.720 6.0 48 0.80 1.12 1.40 0.11
#3 0.171 1.4 1.190 1.8 79.4 0.058 2.6 3.9 0.05 0.771 6.0 51 0.80 1.17 1.46 0.11

14M34 #1 0.001 12.3 0.002 31.5 0.6 0.002 7.7 0.7 1.12 0.035 13.6 12 0.75 2.10 2.81 1.40 3.0 0.3
#2 0.010 5.8 0.028 2.6 7.1 0.029 2.7 7.1 1.00 0.149 7.2 37 0.72 2.28 3.16 0.47

14M35 #1 0.008 6.3 0.011 5.2 6.7 0.007 3.7 4.3 0.64 0.076 9.1 48 0.65 5.14 7.90* 1.45 3.0 0.3
#2 0.027 3.6 0.081 1.9 11.6 0.056 2.6 8.0 0.69 0.318 6.5 46 0.77 2.29 2.98 0.31

14M37 #1 0.013 5.1 0.010 5.5 4.2 0.018 3.0 7.3 1.75 0.055 9.3 23 0.76 7.39 9.73 1.41 9.7 1.4
14M40 #1 0.001 11.7 0.008 7.1 2.7 0.003 5.2 0.8 0.31 0.295 9.4 95 0.68 0.48 0.70 0.19 0.5 0.1

#2 0.001 12.2 0.014 4.6 3.9 0.010 3.4 2.8 0.71 0.090 10.1 26 0.68 0.25 0.37 0.10
#3 0.001 12.2 0.020 3.4 9.1 0.007 3.6 3.2 0.35 0.028 13.1 13 0.66 0.29 0.43 0.12

Ejection correction (Ft): correction factor for alpha-ejection (according to Farley et al., 1996). Uncertainty of the single-grain ages includes both the analytical uncertainty and the estimat-
ed uncertainty of the ejection correction. Sample age is the unweighted average age of all Ft-corrected (U-Th)/He ages (see: standard error). Results from aliquotsmarkedwith asterisk are
not considered in the calculation of the sample age.
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angles between 20 and 29 degrees (Table 6). The integration times of
our eight samples range from ~1.5 to ~11 ka (Table 6).

5. Interpretation and discussion

5.1. Late Miocene/Pliocene to Oligocene cooling pattern of the Aydın block

As discussed earlier, the geothermal gradient in regions of active ex-
tension is relatively high, compared to stable regions (e.g. Foster et al.,
1991). Therefore we consider a geothermal gradient of more than 30
°C/km as the most realistic scenario. In the following discussion we
only refer to exhumation rates calculated for a geothermal gradient of
50 °C/km (Fig. 6b, e, h), however, we cannot exclude the possibility of
a temporally higher gradient, for instance due to local fluid circulation
near active faults.
Table 6
10Be concentrations, production rates, and catchment-wide erosion rates in the central Mende

Sample Latitude
(WGS
84)

Longitude
(WGS 84)

Sample
elevation

Mean
catchment
elevationa

Mean hillslope
angle of
catchmenta

Topographic
shielding
factora

P

(S

(°N) (°E) (m) (m) (°) – (a

14T5 38.1843 28.0838 174 270 15.7 0.9984 5
14T7 38.0732 27.9323 416 887 24.3 0.9933 8
14T8 38.0703 28.0990 398 1127 20.1 0.9955 1
14T9 38.0752 28.0565 402 1100 28.8 0.9871 9
14T12 38.1849 28.0870 185 345 17.5 0.9978 5
14T13 37.9342 28.1713 232 1011 23.0 0.9917 9
14T14 37.9593 28.0818 359 968 25.3 0.9914 9
14T15 37.9716 28.0102 487 998 25.5 0.9909 9

a Themean elevation of the catchments, theirmean hillslope angles, and the topographic shie
topographic shielding factor with the MATLAB script of Greg Balco (http://depts.washington.e
Earth 10Be–26Al calculator (Balco et al., 2008; http://hess.ess.washington.edu/; version 2.2), us

b Blank-corrected 10Be concentrations. The uncertainty of the 10Be concentration includes th
analytical error (1σ) takes into account the error based on counting statistics, the scatter of the
malization. 10Be concentrationsweremeasured by AMS using the compact ETH Zurich Tandy sy
dard S2007Nwith a nominal 10Be/9Be ratio of 28.1× 10−12 (Kubik and Christl, 2010), considerin
secondary standard has been calibrated relative to the primary standard ICN 01-5-1 (Nishiizum

c Erosion rateswere calculatedwith the CRONUS-Earth 10Be–26Al online calculator (Balco et
the analytical uncertainty and the error of the blank correction, whereas external uncertainties
Note that the 2.7 % error (1σ) associated with the 10Be/9Be ratio of the standard S2007N is also
catchment-wide erosion rates, we used a density of 2.5 g/cm3 and themean elevation of the ca
sorption depth scale of 60 cm by the erosion rate.
The new thermochronological data from the Aydın block and the
Küçük Menderes Graben define three groups of samples with different
cooling paths and exhumation histories (Fig. 6). In particular, the data
reveal two phases of footwall exhumation during theMiocene/Pliocene
and the middle Miocene, respectively. The first group is defined by the
youngest AFT and AHe ages from the southern flank of the Aydın
block, which range between ~6 and ~3 Ma (Fig. 7). The exhumation
rate of ~0.43 km/Myr for the latest Miocene and Pliocene (Fig. 6b)
was likely caused by slip on the Büyük Menderes detachment fault
and consequent tectonic denudation of the fault footwall. The link be-
tween footwall exhumation and detachment faulting is supported by
K-Ar data froma fault gouge sample of the BüyükMenderes detachment
that yielded ages between ~5 and ~3 Ma for three different grain size
fractions (Hetzel et al. (2013), sample 09Me-NM01). These data corrob-
orate the interpretation of Gessner et al. (2001a), who inferred rapid
res Massif, Turkey.

roduction ratea 10Be
concentrationb

Erosion
ratec

Internal
uncertainty
(1σ)

External
uncertainty
(1σ)

Time
scale

pallation) (Muons)

t/g/yr) (at/g/yr) (104 at/g) (mm/kyr) (mm/kyr) (mm/kyr) (kyr)

.20 0.198 7.86 ± 0.39 64.3 ±3.3 ±5.6 9.3

.53 0.244 2.99 ± 0.18 254 ±15 ±24 2.4
0.28 0.264 10.25 ± 0.51 83.6 ±4.2 ±7.5 7.2
.98 0.262 5.39 ± 0.29 157.8 ±8.5 ±14.3 3.8
.54 0.203 9.66 ± 0.41 54.2 ±2.4 ±4.5 11
.35 0.254 7.01 ± 0.31 114.4 ±5.2 ±9.8 5.2
.05 0.251 2.05 ± 0.14 390 ±28 ±39 1.5
.25 0.253 4.36 ± 0.22 184.1 ±9.3 ±16.3 3.3

lding factorswere calculated using a 30mAster Digital ElevationModel.We calculated the
du/cosmolab/shielding.m). The 10Be production rates were calculated with the CRONUS-
ing the time-invariant production rate scaling model of Lal (1991)–Stone (2000).
e error of the blank correction and the propagated error of the analytical uncertainty. The
repeatedmeasurement of the same sample, as well as the uncertainty of the standard nor-
stem (Christl et al., 2013). Measured 10Be/9Be ratios are normalized to the secondary stan-
g the 10Be half-life of 1.387±0.012Ma (Chmeleff et al., 2010; Korschinek et al., 2010). The
i et al., 2007; Kubik and Christl, 2010).

al., 2008; http://hess.ess.washington.edu/; version 2.2). Internal uncertainties (1σ) include
(1σ) also include the systematic uncertainty of the sea-level high-latitude production rate.
included in the external uncertainty (Kubik and Christl, 2010). For the calculation of the

tchments. The time over which the erosion rate integrates is calculated by dividing the ab-

http://hess.ess.washington.edu/
http://hess.ess.washington.edu/
http://hess.ess.washington.edu/


Fig. 4. Shaded-relief map of the study area with cooling ages derived from
thermochronology and catchment-wide erosion rates (black numbers) based on
cosmogenic 10Be concentrations of stream sediments.

Fig. 5. Cooling ages from this study plotted versus distance along the profile A to B (for
location see Fig. 2a).
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cooling and coeval normal faulting on the Büyük Menderes and Gediz
detachment faults in the Pliocene based on thermochronological data
from the Gediz detachment only. The samples from the first group
have ZFT ages of ~25 Ma and ZHe ages between 16 and 12 Ma, which
are significantly older than their respective AFT and AHe ages and indi-
cate an exhumation rate of ~0.1 km/Myr before ~5 Ma (Fig. 6b).

The samples from the second group are footwall samples from the
central and northern part of the Aydın block and display early tomiddle
Miocene ZHe and AFT ages and one AHe age of 9.7 ± 1.4 Ma. The exhu-
mation rates derived from these ages decrease through time from ~0.9
to ~0.12 km/Myr between ~15 and ~10 Ma (Fig. 6e). These data docu-
ment another phase of rather rapid cooling and exhumation in themid-
dle Miocene, which may reflect a first phase of activity of the Büyük
Menderes detachment fault. Such an older phase of detachment faulting
was also inferred from a K-Ar age of 21.6± 0.6Ma for a cataclasite from
the Büyük Menderes detachment and a K-Ar fault gouge age of 22.3 ±
0.7Ma for a normal fault in its hangingwall (Hetzel et al., 2013, samples
09Me-NM02 and 10Me18), however, more data are needed to bolster
this interpretation and constrain the beginning of deformation. It is
also important to note that during thefirst phase of detachment faulting
the samples of group 1 (Fig. 6a–c) remained at temperatures above the
partial annealing zone of fission tracks in apatite (i.e. 110–60 °C). Hence,
the two distinct coolingpaths recorded by the sample groups 1 and 2 in-
dicate that two phases of relatively rapid exhumation were separated
by a late Miocene period with little or no tectonic activity.

The third sample group – augen gneisses from the hanging wall
(Çine nappe) exposed as klippen above the Büyük Menderes and in
the Küçük Menderes Graben – gave the oldest thermochronological
ages, indicating that these rocks cooled from ~240 to ~70 °C between
~30Ma and ~18Ma (Fig. 6h). This phase of cooling and exhumation oc-
curred after the stacking of theMenderes nappes (e.g. Ring et al., 1999b;
Gessner et al., 2013) and the Alpine prograde metamorphic evolution.
Although the ZHe and AFT ages show some variability, the data seem
to indicate that exhumation has accelerated in the late Oligocene/early
Miocene from about ~0.16 to ~0.57 km/Myr (Fig. 6h). This interpreta-
tion is consistent with previous studies that reported a phase of rapid
cooling during the late Oligocene and early Miocene for the Çine
nappe (Gessner et al., 2001a; Ring et al., 2003). The subsequent exhu-
mation occurred at a much lower mean rate of ~0.06 km/Myr (Fig.
6h). Only two samples (14M31, −40) from augen gneiss klippen in
the vicinity of the Büyük Menderes graben yielded young AHe ages of
1.6 ± 0.2 Ma and 0.5 ± 0.1 Ma (Figs. 4, 5), which demonstrate that
thefinal cooling of these klippen occurred in the Pleistocene. Similar ob-
servations were made at the Gediz detachment, where two AHe ages
from augen gneiss klippen near the Gediz graben are ~2.9 and
~0.8 Ma (Buscher et al., 2013). As such young AHe ages are only found
near the active graben structures, they probably record recent activity
of graben-bounding normal faults. The presence of active normal faults
is also evident from borehole logs in the Büyük Menderes Graben (e.g.
Karamanderesi and Helvacı, 2003).

In summary, our new thermochronological data suggest that the
Büyük Menderes detachment system was active during two phases
that caused enhanced footwall cooling and exhumation. The first
phase occurred during the middle Miocene and a second phase during
the latest Miocene and Pliocene (Fig. 7). A similar temporal evolution
is documented for the Gediz detachment fault, where detachment
faulting was also operating in the mid-Miocene, as documented by U-
Pb ages of 16.1 ± 0.2 Ma and 15.0 ± 0.3 Ma for two synextensional
granodiorites that intruded the detachment-related mylonites
(Glodny and Hetzel, 2007). This early stage of the Gediz detachment
system was followed by enhanced cooling and footwall exhumation in
the late Miocene and Pliocene, as indicated by apatite and zircon fission
track and (U-Th)/He ages (Fig. 7) (Buscher et al., 2013). This younger
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phase of detachment faulting is supported by one Ar-Ar age of 7± 1Ma
for synkinematic white mica from the Gediz detachment (Lips et al.,
2001). Hence, both detachment faults acted simultaneously in the mid-
dle Miocene as well as during the latest Miocene/Pliocene, as suggested
by Gessner et al. (2001a). The similarity between two ZFT ages of
~25 Ma from the footwall and one ZFT age of ~29 Ma from hanging
wall of the Büyük Menderes detachment (Fig. 5) indicates that this de-
tachment fault was largely active at temperatures below ~250 °C. It was
thus operating at a slightly shallower crustal level than the Gediz de-
tachment. This interpretation is consistent with our field observations
along the studied section, where features indicating a recrystallization
of quartz (i.e. stretching lineations and mm-scale foliation in quartz
veins) are conspicuously absent.

Our interpretation of two phases of detachment faulting, as de-
scribed above, implies that the BüyükMenderes andGediz detachments
did not experience significant rotation over time. In other words, we
argue that the detachments were active at a rather low angle during
both phases of enhanced activity. Our interpretation is based on (i)
the early to middle Miocene K-Ar ages on fault gouge and cataclasite
from both detachments (Hetzel et al., 2013), (ii) the syntectonic em-
placement of two granodiorites at the Gediz detachment at ~15 and
~16Ma, respectively (Glodny andHetzel, 2007) and (iii) the occurrence
of early to middle Miocene sedimentary successions, which were
interpreted as the infill of supra-detachment sedimentary basins (e.g.
Purvis and Robertson, 2004; Sen and Seyitoğlu, 2009; Oner and Dilek,
2011; Oner and Dilek, 2013). Low-angle detachment faulting would
be mechanically feasible (cf. Melosh, 1990; Forsyth, 1992; Collettini,
2011) and represents an efficient way to accommodate long-lasting ex-
tension (e.g., Wernicke, 1995; Jolivet et al., 2010; Morley, 2014). Note,
however, that the actual geometry and dip of the detachments during
the first phase of activity are poorly constrained and alternative inter-
pretations are possible. In particular, the detachments could have been
initially formed as high-angle normal faults in the early Miocene and
could then have been reactivated in the Pliocene as rolling hinge de-
tachment faults, which resulted in their present-day low dip (e.g.,
Gessner et al., 2001a; Ring et al., 2017). This interpretation would
imply that the Büyük Menderes and Gediz detachments did not exist
before the Pliocene (Ring et al., 2017). Note that a rolling-hinge style
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of extension would also be mechanically feasible, as shown by numeri-
cal models (e.g., Lavier et al., 1999; Gessner et al., 2007).

5.2. Erosion pattern of the Aydın block and comparison with the Bozdağ
block

The catchment-wide 10Be-based erosion rates for the watersheds in
the Aydın block range from ~100 to ~400 mm/kyr (Table 6, Fig. 7). Al-
though the rates show some variability from catchment to catchment,
they are quite similar on both the northern and southern mountain
slopes of the Aydın block (Fig. 4). Given that the erosion rates integrate
over several thousand years (Table 6), we infer that a relatively sym-
metric pattern of erosion has prevailed in the Aydın block during the
Holocene.We argue that this pattern is likely controlled by the litholog-
ical similarities of themica schists, whichdominate both theBozdağ and
Bayındır nappes in the studied region of the Aydın block. The signifi-
cantly lower erosion rates of ~54 and ~64 mm/kyr obtained for two
catchments with resistant augen gneisses at the eastern end of the
KüçükMenderes Graben corroborate the pronounced effect of lithology
on erosion and are consistentwith previousfindings in other tectonical-
ly active mountain belts (Palumbo et al., 2010; Scharf et al., 2013b).

The symmetric erosion pattern in the Aydın block is in contrast to
the spatial pattern of erosion documented for the Bozdağ block, where
10Be-based erosion rates show an asymmetric distribution (Buscher et
al., 2013). On the steep escarpment facing the KüçükMenderes Graben,
erosion proceeds at rates that are about three times higher than those
on the gently N-dipping mountain slope facing the Gediz Graben (Fig.
7). We attribute this marked difference in erosion rates to the presence
of resistant, slowly-eroding cataclasites and quartzites in the footwall of
the Gediz detachment, which constitutes a well-preserved geomorphic
feature. The cataclasites associated with the Büyük Menderes detach-
ment in the Aydın block are rather thin and resistant quartzites do not
occur here, which is the reason why this detachment constitutes a less
prominent feature in the landscape. In conclusion, despite having a sim-
ilar relief, the lithological differences between the Gediz and Aydın
blocks explain the contrasting geomorphologic appearance of the two
detachment faults, which otherwise experienced a similar temporal
and structural evolution.

The magnitude of the catchment-wide erosion rates of ~50 up to
~400 mm/kyr (or 0.05 to 0.4 km/Myr) as well as the presence of Neo-
gene and Quaternary sediments on the Büyük Menderes detachment
fault and in the adjacent graben suggests that, apart from normal
faulting, erosion did also contribute to the exhumation of themetamor-
phic rocks in the central Menderes Massif. This hypothesis raises the
question of how far back in time the erosion rates can be extrapolated.
In this respect it is noteworthy that Holocene and late Pleistocene
erosion rates estimated from the volumes of sediments in the deltas of
the Büyük and KüçükMenderes rivers indicate no significant glacial-in-
terglacial variations in erosion (Westaway, 1994). The Holocene erosion
rates for these two river basins of 0.08 and 0.19 km/Myr, respectively,
are similar to erosion rates of 0.09 and 0.15 km/Myr during the late
Pleistocene (i.e. the period of 60–18 ka) (Westaway, 1994, his Tables 5
and 7). Importantly, the rates of 0.15 and 0.19 km/Myr for the entire
Küçük Menderes basin agree quite well with our 10Be-based rates of
~0.25, ~0.16, and ~0.08 km/Myr for the three large catchments that
drain into the Küçük Menderes Graben (samples 14T7, −8, −9 in
Table 6). These arguments suggest that erosion rates in the centralMen-
deres Massif did probably not change significantly over the last glacial-
interglacial cycle and may be at least roughly representative for the
Quaternary period with its repeated glacial-interglacial cycles (cf.
Lisiecki and Raymo, 2005). In order to better resolve the relative impor-
tance of erosion and normal faulting on the exhumation of the meta-
morphic rocks, the evolution of the topography through time needs to
be better constrained, because local relief and hillslope angles constitute
another major control on erosion apart from climate and lithology.

6. Conclusions

In this studywe present new low-temperature thermochronological
data and 10Be-based catchment-wide erosion rates to quantify the inter-
play between extensional faulting and erosion in the central Menderes
Massif in western Turkey. The fission-track and (U-Th)/He data docu-
ment that the Büyük Menderes detachment fault, which defines the
southern flank of the central Menderes Massif, experienced two phases
of tectonic activity in the middle Miocene and in the latest Miocene/Pli-
ocene. In contrast to the footwall, the hanging wall units cooled already
in the early andmiddle Miocene to temperatures below ~70 °C. Erosion
rates from cosmogenic 10Be for catchments in the metamorphic rocks
range mainly from 100 to 400 mm/kyr. If these erosion rates are repre-
sentative for the last fewmillion years, erosionmay havemade a signif-
icant contribution to the exhumation of the metamorphic rocks, even
during the most rapid phases of exhumation. However, clarification of
this issue requires data that allow to reconstruct the paleotopographic
evolution of the Menderes Massif during the Late Cenozoic.
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