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Abstract
The Erzgebirge region of Germany records two major episodes of hydrothermal activity, which includes 

a Late Carboniferous to Early Permian event associated with significant Sn-W mineralization that is related 
to late Variscan granite magmatism, and a Mesozoic episode of polymetallic vein mineralization. In contrast 
to the first event, the age of the younger hydrothermal activity is poorly constrained. For the latter, various 
geochronological methods yielded a wide age range from Permian to early Tertiary. Here we apply fluorite 
(U-Th-Sm)/He thermochronology (FHe) on both types of mineralization with a twofold goal: (1) to investigate 
the sensitivity and applicability of the new FHe method (Evans et al., 2005), and (2) to constrain the thermal 
history of ore deposits in the Erzgebirge region. Two hundred and thirty-three aliquots from seven mineraliza-
tion localities have been dated. Fluorite from six deposits yielded Cretaceous FHe ages between 112 to 79 Ma, 
which are independent of their paragenesis. In contrast, fluorite from the Sadisdorf Sn-W deposit yielded an 
age of 234 Ma. The younger ages are interpreted as cooling ages indicating the time of the last thermal over-
print, including possible hydrothermal activity, in the Erzgebirge. The oldest, Triassic FHe ages at Sadisdorf 
indicate that the Mesozoic thermal overprint only partially reset the (U-Th-Sm)/He system of the late Variscan 
mineralization. Thermal modeling based on FHe ages and He diffusion parameters in fluorite results in ther-
mal histories comparable to the results from the well-established apatite-based thermal modeling. This study 
emphasizes the applicability of fluorite (U-Th-Sm)/He thermochronology, which is especially suited for ore 
deposits where apatite is lacking.

Introduction
Fluorite is a mineral commonly occurring (1) in hydrother-
mal deposits; (2) as an accessory phase in granites, pegmatites, 
carbonatites, and alkaline magmatites; (3) in stratabound ore 
deposits; and (4) as authigenic phase in sandstones. In par-
ticular, hydrothermal veins occur in a wide range of geologic 
settings, which are not all well suited for the commonly used 
apatite thermochronology because apatite easily dissolves in 
the presence of acid fluids. The need to determine the age of 
such ore deposits has led to the development of isotopic tech-
niques for fluorite geochronology such as the Sm/Nd (Ches-
ley et al., 1991, 1994) and U-Th-Pb methods (Hofstra et al., 
2000). Fluorite low-temperature thermochronology using the 
fission track technique was first attempted by Grønlie et al. 
(1990). Recently, the fluorite (U-Th-Sm)/He method (FHe) 
was introduced by Evans et al. (2005) and applied by Pi et al. 
(2005) and Siebel et al. (2010). According to these studies, 
the closure temperature of the (U-Th-Sm)/He fluorite system 
ranges between ca. 170° and 60°C (Evans et al., 2005; Pi et 
al., 2005), which is well suited for dating low-temperature 
thermal and hydrothermal events. To investigate the sensi-
tivity and routine applicability of FHe thermochronology, 
we have performed a comprehensive study on fluorite from 
several ore deposits in the Erzgebirge (German ore moun-
tains; Fig. 1). The Erzgebirge is an ideal test area because 
it hosts numerous well-studied ore deposits of variable types 
often containing fluorite (e.g., Kempe et al., 2002). Moreover, 
the complex post-Variscan thermal history of the Erzgebirge 

is extensively studied by K-Ar and Ar-Ar studies on mica and 
hornblende (Werner and Lippolt, 2000), apatite fission track 
analysis (Ventura and Lisker, 2003; Lange et al., 2008), as 
well as zircon and apatite (U-Th-Sm)/He thermochronology 
(Wolff et al., 2015). These studies suggest a significant Meso-
zoic sedimentary burial after the post-Variscan denundation 
and before the Variscan basement has been reexhumed in the 
Late Cretaceous (Voigt, 2009). This thermal history is super-
imposed by hydrothermal activity. Our study, performed on 
fluorite from various sites in the Erzgebirge, demonstrates 
that FHe thermochronology serves as an excellent tool to con-
strain the minimum age of the latest thermal overprint in such 
a complex ore district.

Regional Geology and Post-Variscan  
Tectonic Evolution

The Erzgebirge forms an antiform structure exposing 
high- to medium-grade metamorphic gneisses in the core 
surrounded by a sequence of low-grade metamorphic units, 
mainly composed of micaschists and phyllites. This meta-
morphic assemblage formed by crustal stacking during the 
Carboniferous (e.g., Werner and Lippolt, 2000) and was 
later intruded by late- to post-Variscan granitoids and locally 
covered by rhyolites (Kossmat, 1925; Romer et al., 2007; 
see Fig. 1b). The Erzgebirge is bordered in the east by the 
Lausitz thrust to the Cadomian basement of the Lausitz block 
(Linnemann and Romer, 2002). This fault is sealed by Creta-
ceous deposits that formed at the margin of the synsedimen-
tary uplifting block in the east. The initially flexural margin 
was later transformed into a thrust (Linnemann and Romer, 
2010). The Eger fault delimits the Erzgebirge toward the 
south (e.g., Kroner et al., 2007; Fig. 1b). The post-Variscan 
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sedimentary cover of the region starts with Late Carbonifer-
ous to Early Permian continental deposits. In the Triassic, the 
area formed a marginal part of the Central European basin 
and experienced some subsidence, as suggested by facies and 
thickness trends from surrounding Triassic deposits (Voigt, 
1995). West, north, and east of the Erzgebirge, the Permian to 
Triassic sequences are still preserved (Fig. 1a), but the thick-
ness of the former cover on the currently exposed Erzgebirge 
is a matter of debate (Schröder, 1976; Brause, 1988; Götze, 
1998; Voigt, 2009). Schröder (1987) estimates a thickness of 
1.5 km, while Dudek et al. (1991) postulates a post-Variscan 
denudation of at least 2.5  km. Thermal modeling reveals a 
Permo-Mesozoic burial temperature reaching ca. 80° to 
100°C at the south, while the sedimentary cover thins out 
toward the north (Wolff et al., 2015).

In the eastern Erzgebirge, Upper Cretaceous (Cenoma-
nian to Coniacian) sediments transgressively overlie the 
Variscan basement (e.g., Pietzsch, 1913; Kossmat, 1925; Wolf 
et al., 1992; Prazak, 1994; Voigt, 1995; Janetschke and Wilm-
sen, 2014). In the Middle Cenomanian, the Niederschöna 
paleoriver delivered sediments into the northern part of the 
Bohemian Cretaceous basin (Kossmat, 1925; Voigt, 1998; 
Schröder and Peterek, 2001; Voigt, 2009). Gravel composi-
tion reveals that during this time, the Triassic sedimentary 
cover has already been removed. Final exhumation of the 
Erzgebirge and the entire northern Bohemian massif in the 
late Cenozoic has led to almost complete denudation of the 
Upper Cretaceous sedimentary cover. Sedimentary data 

(Voigt, 2009) and cooling ages of the Lausitz massif (Lange 
et al., 2008) reveal exhumation exceeding at least 4 km dur-
ing Late Cretaceous basin inversion (Voigt, 2009). In adjacent 
areas, similar amounts of Late Cretaceous inversion have 
been reported, for instance, from the Karkonosze and Harz 
mountains, and Thuringian forest (Thomson and Zeh, 2000; 
von Eynatten et al., 2008; Danišík et al., 2010).

In the western Erzgebirge the basement is partly covered 
by Eocene to Oligocene fluvial deposits (Knobloch et al., 
1996) and locally by Oligocene and lower Miocene mafic lava 
flows (Suhr, 2003). The lavas originally flowed in paleoval-
leys, but now they are forming elongated hills representing 
the Neogene palaeosurface. Locally the relief inversion allows 
estimating the post-Eocene erosion to be less than 200 m 
(Eissmann, 1997). However, Ventura and Lisker (2003) sug-
gested a late Cenozoic denudation that removed a thick cover 
layer (2.1–5.6 km) connected to the activity of the Eger gra-
ben in the Oligocene. This eroded thickness is debated. For 
instance, according to their apatite fission track data Lange et 
al. (2008) favored less than 1 km for late Cenozoic denuda-
tion. The minor Cenozoic denudation is also supported by the 
apatite (U-Th)/He thermochronological data of Wolff et al. 
(2015).

Hydrothermal Activity and Vein Ore Deposits
The Erzgebirge is famous for its numerous vein ore depos-

its which have been extensively mined for centuries. There 
is a complex picture of relationships between Variscan 
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Fig. 1.  (a). Position of the Erzgebirge (German ore mountains) in the European Variscides and surrounding Permo-
Mesozoic basins (modified after Kley, 2013). Rectangle represents the position of the study area. (b). Geologic map of the 
Erzgebirge (simplified after Wolf et al., 1992) with sample locations (underlined) and major fault zones.
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magmatism, tectonic setting, vein composition, and the ore 
type for various mineralization sequences (W, Sn-W, Zn-Pb-
Cu, Ag-Sb, Bi-Co-Ni-U, etc.). Accordingly, there is a long-
lasting debate on the genesis and timing of various types of 
mineralizations. Recently, two major periods of hydrother-
mal activity are commonly distinguished. The first is related 
to late Variscan granitoid magmatism, the second is assumed 
to be Mesozoic (Fig. 2a; Baumann et al., 2000; Seifert, 2008; 
Romer et al., 2010b). There are, however, conflicting views 
assuming that the second period is also late Variscan (e.g., 
Tischendorf et al., 1989). Depending on the approach used 
in various studies (with the mineral association, tectonic posi-
tion, and/or relative age relationships as the main classification 
criteria), mineralization styles were assigned alternatively to 
the late Variscan or to the Mesozoic period (Baumann, 1967, 
1994a, b; Tischendorf, 1989; Höhndorf et al., 1994; Kuschka, 
1996, 1997; Baumann et al., 2000; Seifert, 2008). Further-
more, mineralization types belonging to different styles and 
periods may be superimposed within one single vein system as 
may be illustrated by the Ehrenfriedersdorf tin deposit inves-
tigated in more detail in this work (Hösel et al., 1994; Kumann 
and Leeder, 1994). There is, however, a consensus that (1) the 
typical Sn-W mineralization belongs to the first, late Variscan 
period and (2) the characteristic polymetallic or fluorite-
barite mineralization (so-called “fba”) belongs to the second, 
post-Variscan period (referred to as “Mesozoic” in this work).

Early applications of isotope geochronology (pitchblende 
chemical U-Pb and Pb/Pb dating and K-Ar dating on altered 
wall rocks; see review by Baumann, 1967) indicated two main 
events of late Variscan and Mesozoic (180–80 Ma) ages, and 

a multiple remobilization of uranium in the related deposits 
starting from the late Variscan. The latter phenomenon was 
confirmed by more recent studies (Eikenberg, 1991; Förster 
and Haack, 1996).

The late Variscan emplacement of granitoids, rhyolites, 
and lamprophyric dikes was accompanied by increased high-
T hydrothermal activity and associated with Sn-W and Mo 
enrichment in greisen, vein, and skarn deposits (e.g., Stem-
prok and Sulcek, 1969; Baumann et al., 2000; Dolejs and 
Štemprok, 2001; Seifert, 2008; Romer et al., 2010a). The age 
of this early mineralization is now well constrained to a time 
interval between Late Carboniferous to Early Permian (e.g., 
Tischendorf and Förster, 1990; Baumann et al., 2000). Never-
theless, exact absolute age relationships between magmatism 
and ore precipitation are a matter of considerable debates. 
For example, a Carboniferous or Permian age of tin mineral-
ization is highly controversial (Kempe et al., 2004; Romer et 
al., 2007, 2010a).

The Mesozoic mineral veins are predominantly polymetal-
lic of barite-fluorite-sulfide and hematite-barite type hosted 
in the metamorphic basement rocks. Some veins contain 
anomalous concentrations of U, Ba-Sr, Bi-Co-Ni-As-Ag, and 
Ge-Hg or Fe-Mn (e.g., Trinkler et al., 2005; Seifert, 2008). 
This second ore formation period may have been driven by 
major tectonic events affecting the European continent, such 
as the Triassic opening of the Tethys or Jurassic to the Cre-
taceous opening of the Central and North Atlantic (Mitchell 
and Halliday, 1976; Halliday and Mitchell, 1984; Cathelineau 
et al., 1990; Baumann and Weber, 1996; Romer et al., 2010b). 
Tischendorf and Förster (1990) related the late vein-type 
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deposits to the Alpine orogenesis that had a remote influence 
on the European Variscides. The relative age relationships 
of the Mesozoic vein systems are studied in detail by Seif-
ert et al. (1992), Baumann (1994a, b), Kuschka (1996, 1997), 
Baumann et al. (2000), and Seifert (2008) and were recently 
reviewed by Romer et al. (2010b). The age of the second 
period is still poorly constrained and assigned mostly to the 
Mesozoic by recent workers (e.g., Höhndorf et al., 1994; Trin-
kler et al., 2005; Romer et al., 2010b; Fig. 2a). According to 
Klemm (1994), fluids from polymetallic mineralizations show 
chemical compositions typical of brines in deeply buried sedi-
mentary basins.

Sampling and Methods
We focused our study on fluorite samples from the two well-

defined mineralization types: from the late Variscan Sn-W and 
from the Mesozoic polymetallic deposits (so-called “fba-type” 
with fluorite and barite). Samples from Sn-W deposits were 
collected mainly from underground mines and from open 

pits (Horni Krupka, Zinnwald, Sadisdorf, Ehrenfriedersdorf, 
and Dörfel). Most of them were characterized in more details 
previously (Kempe et al., 2002; Monecke et al., 2011). Addi-
tional samples were collected from mine dumps and received 
from museums in Dörfel, Zinnwald, and Ehrenfriedersdorf 
(Fig. 1b, Table 1). These samples belong mainly to the late 
Variscan Sn-W mineralization. However, samples from Meso-
zoic mineralizations, which are also present at Ehrenfrieders-
dorf and Dörfel, were studied as well. The fluorite associated 
with Sn-W mineralization is well characterized by specific 
rare earth element (REE) patterns displaying distinct nega-
tive and positive Eu anomalies, enrichment of heavy REEs, 
and often also the tetrad effect (Monecke et al., 2002, 2011). 
Fluorite samples from Mesozoic polymetallic deposits (Frei-
berg, Lauta, and Frohnau) were collected from mine dumps 
or obtained from museum collections. Fluorite of this type is 
often characterized by a conspicuous yellow to honey-brown 
color. Such typical color often occurs together with violet 
or greenish color in single fluorite crystals or aggregates. 

Table 1.  Summary of the Obtained Fluorite (U-Th-Sm)/He Ages, Sample Locations, and  
REE + Y Content of the Studied Fluorite Samples from the Erzgebirge 

	 Sample-average FHe data	 Locality-average FHe data

		  Lat. 	 Long. 	 Number	 Median	 CI	 REE+Y		  Number	 Median	 CI
Locality	 Samples	 (° North)	 (° East)	 of ages	 (Ma)	 (Ma)	 (ppm)	 Color	 of ages	 (Ma)	 (Ma)

Annaberg Dörfel	 RW-2-12	 50.5765	 12.9525	 9	 99.2	 21.7	 563	 Yellow	 42	 104.5	 7.4
	 RW-2-15a			   8	 179.4	 34.4	 276	 Colorless
	 RW-2-15b			   11	 123.9	 13.8	 227	 Green
	 RW-2-15c			   5	 69.3	 19.1	 259	 Pink
	 RW-2-15d			   9	 84.0	 8.1	 398	 Pink
	 DF15			   --	 --	 --	 62	 Colorless
Annaberg Frohnau	 FRO-1	 50.5765	 12.9525	 11	 98.9	 10.7	 614	 Colorless	 30	 80.6	 9.2
	 RW-2-23a			   3	 60.0	 --	 337	 Colorless
	 RW-2-23b			   2	 48.0	 --	 221	 Black
	 RW-5-25a			   5	 75.3	 8.8	 440	 Honey
	 RW-5-25b			   4	 42.3	 76.1	 168	 Pink
	 RW-9-8a			   5	 93.0	 19.0	 156	 Yellow
Ehrenfriedersdorf	 ED268	 50.6418	 12.9789	 4	 122.1	 24.6	 273	 Rosa	 54	 109.7	 4.5
	 ED506			   1	 101.9	 --	 --	 Pink
	 RW-2-20			   15	 118.2	 8.9	 424	 Yellow
	 RW-2-21			   8	 119.9	 15.0	 401	 Honey
	 RW-2-22a			   9	 110.4	 4.8	 370	 Pink
	 RW-2-22b			   13	 95.4	 10.7	 325	 Pink
	 RW-9-5			   4	 89.2	 31.0	 343	 Yellow
Freiberg	 RW-9-1	 50.9598	 13.0023	 --	 --	 --	 436	 Honey	 --	 --	 ---
	 RW-9-12b			   --	 --	 --	 535	 Yellow
	 RW-9-13			   --	 --	 --	 72	 Colorless
Horni Krupka	 RW-5-7	 50.7165	 13.8550	 1	 36.5	 --	 125	 Colorless	 19	 79.0	 10.4
	 RW-5-8			   8	 79.0	 6.6	 126	 Colorless
	 RW-5-9			   6	 101.7	 7.0	 1353	 Honey
	 RW-5-10			   4	 22.5	 4.2	 224	 Colorless
Lauta	 RW-2-8a	 50.6634	 13.1543	 11	 74.7	 7.4	 510	 Honey	 35	 111.7	 10.3
	 RW-2-8b			   6	 113.5	 32.4	 329	 Pink
	 RW-2-8c			   9	 133.9	 21.7	 388	 Pink
	 RW-2-8d			   9	 164.5	 42.5	 251	 Black
Sadisdorf	 SD41	 50.8251	 13.6463	 3	 215.7	 --	 2514	 Colorless	 20	 234.4	 15.9
	 SD1001			   9	 228.3	 19.2	 502	 Brown
	 SD1004b			   4	 293.3	 19.7	 883	 Brown
	 UK86			   4	 210.9	 31.2	 222	 Colorless
Zinnwald	 RW-5-11	 50.7294	 13.7675	 10	 76.3	 18.6	 116	 Black	 33	 109.7	 10.1
	 ZW1005			   4	 71.0	 23.9	 1382	 Green
	 ZW315/2g			   17	 130.7	 10.6	 1854	 Green
	 ZW322			   2	 86.4	 --	 46	 Pink

Notes: The confidence interval (CI) of the median is calculated according to Bonett and Price (2002); -- = no information
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Moreover, such Mesozoic polymetallic fluorites are typified 
by a hump-shaped REE distribution pattern with an enrich-
ment of the middle REE and weak Eu anomalies (Trinkler et 
al., 2005). The characteristics described above may be used 
as a criterion to distinguish late Variscan Sn-W and Mesozoic 
polymetallic samples when various fluorite types are present 
in a single deposit. To cover the full scale of specific fluorite 
types, samples covering a broad variety of colors have been 
selected from each locality. All samples investigated are listed 
in the electronic Appendix 1.

Fluorite samples from Horni Krupka, Ehrenfriedersdorf, 
Dörfl, Frohnau, and Lauta were studied by cathodolumines-
cence (CL) imaging and spectroscopy to check their defect 
structure, homogeneity, and internal textures (cf. Kempe 
and Götze, 2002) if not previously investigated (Kempe et 
al., 2002). For CL imaging, a JEOL scanning electron micro-
scope (SEM) JSM 7001F with a thermal field emission elec-
tron gun equipped with a GATAN MiniCL detector was used. 
For picture photographs, the SEM was operated at 20 kV and 
0.6 nA. CL spectra were obtained by means of a system con-
sisting of a GATAN MonoCL 4 mirror, an optical fiber guide, 
and a Princeton Instruments monochromator Acton SP 2300 
equipped with a PIXIS 256 CCD which was attached to the 
same microscope. The SEM was operated at 20 kV and 1nA 
with a defocused beam when taking the spectra.

Fluorite (U-Th-Sm)/He thermochronology was performed 
on 233 aliquots of 38 samples (between 1 and 17 aliquots/
sample; Table 1) from eight localities (see details in electronic 
App. 1). In the samples from the Freiberg mining district and 
from the Sn-bearing veins at Dörfel, the measured He content 
was too low to obtain meaningful results. Thus, these samples 
are not considered for age interpretations. For sample prepa-
ration, the outer surface of the euhedral crystals was stained 
by a marker pen and afterward carefully crushed. Only intact 
shards derived from the interior of the crystals with no or 
only very tiny inclusions were selected to avoid implantation 
of helium from U-Th-Sm-rich phases and alpha ejection as 
well as excess He and tiny mineral phases of extreme actinide 
content (cf. Pi et al., 2005; Fig. 3). Typically, an average frag-
ment size of ca. 100- to 400-µm edge length was used. The 
alpha-ejection correction (Farley et al., 1996) was not nec-
essary in this case because fragments from the outer surface 
of the crystals were excluded. Only single-fragment aliquots 
were dated. The rationale behind this analytical concept was 
to study the reliability of the method when the dated volumes 
are very small in size and might be influenced by primary or 

secondary zoning that is common in fluorite crystals (e.g., 
Kempe et al., 2002; Schwinn and Markl, 2005). Furthermore, 
such heterogeneity may also be related to a possible age dis-
tribution within the samples, which would be overlooked if 
larger sample sizes are used for analysis as discussed below. 
Furthermore, the accumulation of helium may be spatially 
decoupled from the volumes where the alpha-emitting ele-
ments are concentrated, which could have remarkable effects 
in zoned crystals due to the travel range of alpha particles, 
which is ca. 13 to 14 µm for 238U and 232Th in fluorite (cal-
culated by the SRIM method, see Ziegler et al., 2010). Mul-
tifragment aliquots may yield more consistent ages as in this 
way the randomly biased fragments average the influence of 
alpha ejection and other factors (see discussion below).

The single-fragment aliquots were wrapped in ca. 1 × 
1-mm-sized platinum capsules and degassed in high vac-
uum by heating with an infrared diode laser. The extracted 
gas was purified using a SAES Ti-Zr getter at 450°C. The 
chemically inert noble gases and a minor amount of other rest 
gases were then expanded into a Hiden triple-filter quadru-
pole mass spectrometer equipped with a positive ion count-
ing detector. Crystals were checked for complete degassing 
of helium by sequential reheating and helium measurement. 
Following degassing, samples were retrieved from the gas 
extraction line, unpacked and spiked with calibrated 230Th 
and 233U solutions. The fluorites were then dissolved in Savil-
lex Teflon® vials using ultrapure 30 % HCl at 75°C and held 
for 24 h at this temperature until total drying. The digestion 
was controlled by a stereo microscope and the last step was 
repeated until total dissolution. The sample solutions were 
analyzed in 4% HCl matrix, using a Perkin Elmer Elan DRC 
II ICP-MS equipped with an APEX microflow nebulizer. The 
actinide concentrations were determined by isotope dilution 
method and the Sm and the other REEs by external calibra-
tion method. The level of detections was between 1 and 2 pg, 
slightly varying for the different ICP-MS sessions. FHe ages 
were calculated using Taylor series that can be summarized by
4Het = 4Hei + 8*238U(exp(λ238t) – 1) + 7*235U(exp(λ235t) – 1) 

+ 6*232Th(exp(λ232t) – 1) + 147Sm(exp(λ147t) – 1),

where 4Het and 4Hei are the total and initial helium content, 
respectively (McDougall and Harrison, 1988). The uncer-
tainties of FHe ages were calculated as a square root of the 
sum of squares of uncertainty of He and He-production-
weighted uncertainties of U, Th, and Sm measurements. 
The sample and locality averages are expressed—to a first 
approximation—as medians because the single-fragment ages 
are mostly not Gaussian distributed and thus the arithmetic 
mean and the standard deviation are not statistically robust 
(see discussion below). For the same reason we cannot apply 
any standard deviation-based outlier rejection procedure like 
that suggested by Fitzgerald et al. (2006) for apatite (U-Th)/
He data. Remarkably, the analytical uncertainties of He and 
actinide data do not provide hints for rejection of individual 
ages that are considerably older than the dominant proportion 
of age data.

The concentrations of REEs and some other elements were 
determined on the dissolved crystal fragments that were used 
for (U-Th-Sm)/He geochronology. Fluorites with an REE 
+ Y content exceeding 3,000 ppm have been excluded from 
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Fig. 3.  Image of a typical single fluorite fragment analyzed (inclusion-free, 
photographed in ethyl alcohol). 
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this study to avoid extreme chemical compositions which may 
change significantly the diffusion mechanisms and thus influ-
ence the closure temperature (Tc) of fluorite. 

Results

Cathodoluminescence (CL)

CL imaging and spectroscopy demonstrate a significant 
heterogeneity in the defect structure of fluorite crystals and 
aggregates from Mesozoic polymetallic or fluorite-barite veins 
in accordance with earlier results obtained for the samples 
from late Variscan Sn-W mineralization (Kempe et al., 2002). 
This heterogeneity is only partly paralleled by visible varia-
tions in color. The imaged textures may be related to primary 
growth zoning (oscillatory zoning, sector zoning, etc.) and 
secondary alteration, respectively. This is illustrated by the 
fluorite-barite vein sample RW-2-22a from Ehrenfriedersdorf 
in Figure 4a, b. This sample is mainly transparent and exhib-
its a yellow to honey-brown color with some cloudy patchy 

violet inner and normally zoned violet outer rim zones and a 
few small, nearly colorless crystal overgrowths (Fig. 4a). The 
cloudy patchy violet zones are clearly related to secondary 
alteration. In CL images, the yellow to honey-brown crystal 
parts appear dark or weakly luminescent with normal oscil-
latory and sector growth zoning. The weak luminescence is 
mainly related to the emission lines from REE3+/2+ centers 
and a broadband feature peaking at about 575 nm (Fig. 4b). 
The luminescence of cubic Dy3+ at 671 and 759 nm prevails 
over noncubic Dy3+ (482 and 584 nm) in accordance with the 
dilute character of the incorporation of the REEs. In con-
trast, the cloudy violet patches exhibit strong luminescence 
(Fig. 4a) dominated by two broadband features peaking at 
305 and 565 nm, respectively (Fig. 4b). Luminescence signals 
from REEs (Eu2+ and noncubic Dy3+) are only of very minor 
importance in these spectra. The band shape of the main 
luminescence features and comparison with the spectra of the 
yellow crystal parts indicate that the bands at 305 and 575 nm 
consist of more than one signal. The nature of these bands is 

Fig. 4.  SEM-CL images and spectra 
of fluorite from Mesozoic (“fba”) miner-
alization: (a). CL image of fluorite sample 
RW-2-22a (Ehrenfriedersdorf) with yel-
low to honey-brown central crystal parts 
infiltrated by violet patchy zones of sec-
ondary alteration. An almost colorless 
overgrowth is visible in the lower right 
part of the image. Note that outer crys-
tal rims also contain some violet zones 
(arrow). (b). Typical CL spectra from 
(a) of a weak luminescent yellow and 
strongly luminescent patchy violet crystal 
part. The spectra are stacked for clarity. 
See text for further explanations. (c). CL 
image of fluorite sample RW-2-8c (Lauta) 
with primary oscillatory and sector zon-
ing. Note the fibrous internal texture of 
the violet colored crystal sectors.
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unclear. Investigation on pure, artificially grown optical flu-
orite indicates that they are related to the concentration of 
interstitial defects occurring in variable amounts depending 
on growth conditions (Kempe et al., unpub. data). In contrast, 
violet zones in oscillatory growth zoning are characterized by 
very low luminescence intensity (Fig. 4a). We assume that 
such zones formed during circulation of U-rich fluids (Kempe 
et al., 2002) but the zones are often not enriched in uranium. 
A characteristic feature of them is a fibrous internal texture 
illustrated here by CL imaging of a sample from Lauta (RW-
2-8c; Fig. 4c). All described types of defect structures enhanc-
ing, modifying, or quenching CL emission may also influence 
the He diffusion behavior in fluorite and thus the ability of 
the structure to retain He. It is not possible to separate the 
various fluorite types from each other by handpicking without 
CL imaging.

REE contents

The average REE + Y content of the 233 dated fluorite ali-
quots is 479 ppm (details in electronic App. 1). The results 
of the REE measurements are presented in REE patterns 
obtained by chondrite normalization using the values by Sun 
and McDonough (1989). The patterns can be subdivided 
into two major groups according to the two mineralization 
types to which they belong (Fig. 5). The samples from Lauta, 
Frohnau, and Freiberg show mainly hump-shaped patterns 
(i.e., mid-REE enrichment) with minor Eu anomalies, which 
is typical for the Mesozoic fluorite-barite deposits. In contrast, 
samples from Zinnwald, Horni Krupka, and Sadisdorf display 
pronounced Eu anomalies, enrichment of heavy REEs and, 
sometimes, also the tetrad effect in their REE distribution 
patterns (Monecke et al., 2002), which is characteristic for 
the late Variscan Sn-W deposits. Samples from Dörfel and 
Ehrenfriedersdorf show both patterns (Fig. 5). Using linear 
discriminant analysis the samples can be classified by their 
relative content of light, medium, and heavy REEs (La, Gd, 
and Er; Fig. 6). This discrimination procedure yields high 
match for the polymetallic and Sn-W fluorites (89 and 97%, 
respectively). Consequently, the observed REE patterns of 
the selected samples correspond well to the two main miner-
alization periods.

(U-Th-Sm)/He ages

The summary of fluorite helium ages and the principal sta-
tistical data obtained on fluorites of the studied mining dis-
tricts are compiled in Table 1, while the detailed raw data 
are listed in the electronic Appendix 2. The individual single 
fragment ages are plotted in Figure 7. Median FHe ages for 
the individual localities range from 79 to 234 Ma. Six out of 
seven localities yield Cretaceous median FHe ages between 
79 and 112 Ma, only the Sadisdorf fluorite from the eastern 
Erzgebirge yields a Triassic median FHe age (Fig. 8). Except 
for this “oldest” sample the single-fragment aliquots yielded a 
reasonable confidence interval of the median (calculated by 
the method of Bonett and Price, 2002) below 11 Ma (Table 1).

Source of radiogenic helium

The ratio of the alpha-emitting, radioactive elements carry 
genetic information on fluorite formation and can be used as 
an index for the homogeneity of the studied fluorites. The U, 

Th, and Sm concentrations in the 233 dated single-fragment 
fluorite aliquots range between the level of detection and 35, 
305, and 105 ppm, respectively. The average concentrations 
are ca. 0.8 ppm U, 12.5 ppm Th, and 12.3 ppm Sm. The con-
tributions of the three alpha-emitting elements to the total 
radiogenic helium are highly variable (Fig. 9). It is possible 
to distinguish two types of localities. In case of the Zinnwald, 
Ehrenfriedersdorf, and Lauta samples, the sources of helium 
(from U, Th, or Sm) show characteristic proportions that 
define distinct compositional fields with only minor overlap 
(Fig. 9a). For instance, the He is derived mainly from Th in 
fluorites from Ehrenfriedersdorf, while in Lauta the Th con-
tribution is subordinate. U-generated He is dominant in most 
Lauta samples while it is a minor component for the Zinnwald 
and Ehrenfriedersdorf sample. In some fluorites Sm-gener-
ated He is dominating, its contribution can be as high as 75% 
as, for example, in some Zinnwald samples. These relatively 
well-defined distributions indicate relative homogeneity of 
the fluorite crystals from these locations. In the other locali-
ties (Fig. 9b), the proportion of U-, Th-, and Sm-generated 
helium is not characteristic and the single-fragment aliquots 
show much wider scatter. These U-Th-Sm characteristics do 
not correlate to a late Variscan or Mesozoic formation age of 
the deposit. Thus, we assume that these features are prin-
cipally controlled by the wave length and amplitude of the 
intracrystal zonation patterns and additional heterogeneities 
(as revealed by CL imaging) that are characteristic for a given 
sample and its formation history.

Discussion

Chemical heterogeneity and structural properties of  
the studied fluorites

Variations in chemical composition (e.g., REE distribution 
patterns, Y, U, and Th concentrations) reflect the formation 
conditions of hydrothermal fluorite influenced by the external 
supply of trace elements, remobilization of elements from the 
host rocks, fractionation of them in the hydrothermal environ-
ment, and during fluorite precipitation (Bau, 1991; Monecke 
et al., 2002, 2011; Schwinn and Markl, 2005). In this respect, 
there is a clear distinction between fluorites from Sn-W min-
eralization and samples from the Mesozoic polymetallic veins. 
Our data underline the contrasting chemical and structural 
characteristics of fluorite from the two mineralization types. 
For the Erzgebirge these differences are also constrained by 
chemical studies on fluid inclusions (Klemm, 1994) and Sr 
and Nd isotope investigations (Höhndorf et al., 1994). 

There is not only a clear distinction between samples from 
the two mineralization types but also a variability in chemical 
composition and structure (expressed in color and in CL char-
acteristics) within each mineralization group and at each local-
ity (Figs. 5, 9, App. 2; cf. Kempe et al., 2002). For example, the 
high Th contents in the brownish fluorite sample (SD1001) 
from Sadisdorf and in the rose fluorite from an early cassiter-
ite-bearing tourmaline veinlet at Ehrenfriedersdorf (ED 268) 
reflect the high Th activity at the early stages of evolution in 
tin-bearing hydrothermal systems (Morozov et al., 1996). The 
REE distribution pattern of the latter sample with depletion of 
light REEs (including Sm), enrichment of heavy REEs, and a 
small positive or no Eu anomaly is also typical of early fluorites 
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Fig. 5.  REE distribution patterns of single crystal fragment fluorite samples (chondrite normalized after Sun and 
McDonough, 1989). The REE patterns illustrate the variability of chemical composition of fluorite studied. Fluorite from the 
Mesozoic polymetallic mineralization (a-f, hump-shaped patterns) and the late Variscan Sn-W deposits (g-l, Eu anomalies, 
heavy REE enrichment, and tetrad effect) can be distinguished clearly. 
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from such deposits (Gavrilenko et al., 1997). Similarly, the high 
U content in fluorite from Lauta (Fig. 9) may be related to 
remobilization of U during vein formation, which is also mir-
rored by the occurrence of pitchblende in the paragenesis. 
Finally, there is an intrasample variability in composition and 
defect structure as demonstrated by CL imaging and spectros-
copy (Fig. 4) but also by variations in chemical composition 
of single fragments derived from one individual crystal (Fig. 
9). Structural variability and heterogeneity may influence FHe 
dating as will be discussed in more detail below.

Intrasample FHe age distributions

The number of aliquots analyzed from the mining locali-
ties ranges between 19 and 54, but typically exceeds 30 (Table 
1); thus these data sets allow statistical treatment. Only some 
samples pass the chi-square normality test, while in case of 
the Lauta and Dörfel data the fitting to lognormal distribu-
tion is fair. In some other sample sets (e.g., Frohnau and 
Ehrenfriedersdorf) even a bimodal character with extremely 
old single-fragment aliquot ages from 250 to 300 Ma is pos-
sible (Fig. 7). Rejection of the few ages older than 200 Ma for 
Frohnau and Ehrenfriedersdorf let the remaining data sets 
pass the normality test.

The possible biasing factors that contribute to the consider-
able spread of single-fragment FHe ages are the following:

1.  Initial (nonradiogenic) helium: During the formation of 
the fluorite crystals the ore-bearing fluids may carry a high 
amount of radiogenic noble gases (Ar and He). These gases 
may be trapped in fluid inclusions as “parentless” or “excess” 
helium (e.g., Fitzgerald et al., 2006). The only way to reduce 
their possible contribution is the careful selection of fluid 
inclusion-free aliquots. Working in alcohol immersion the 
achievable optical resolution is around 1 µm. As the selected 
crystal fragments did not contain any visible fluid inclusions 
the SEM investigations did not show submicrometer-sized 
inclusions. Thus we assume that the contribution of “parent-
less” He from fluids is negligible.

2.  Actinide- and Sm-rich refractory inclusions: If refractory 
mineral inclusions carry alpha-emitting elements and these 
minerals are not dissolved by the routine fluorite digestion 

techniques then we have a deficit of mother elements and the 
calculated ages became biased toward older ages. We rarely 
observed tiny inclusions close to optical resolution of the 
research microscope, but their high actinide content could 
not be approved by in situ analytical tests (SEM, EMPA, and 
LA-ICP-MS). The majority of the aliquots did not contain 
any visible inclusions and did not yield increased amounts of 
helium at the sequential reheating. Consequently, although 
unlikely, this source of bias cannot be excluded completely.

3.  Zonation, heterogeneity: The alpha particle, ejected dur-
ing radioactive decay, has a stopping distance of 13 to 14 µm in 
the fluorite lattice. This implies that the concentration of alpha-
emitting elements and the accumulation of helium are not nec-
essarily consistent at microscale. The CL mappings indicate 
that fragments with a typical size of 100 to 400 µm, used for 
dating, may contain He or actinide anomalies. Therefore, the 
zoned character of the crystals definitely contributes to the 
scatter in the single-fragment ages. This is supported by the 
fact that the FHe ages of the samples having definite U/Th/Sm 
ratios (Fig. 9a) yield lower relative standard deviations of the 
single-fragment age distributions than the samples with highly 
variable U/Th/Sm ratios (Fig. 9b)—38 and 50%, respectively.

4.  Variation in He diffusivity: From former studies (Evans 
et al., 2005; Pi et al., 2005) and own preliminary laboratory 
experiments it appears that the closure temperature of fluo-
rite is highly variable. We assume that the observed variability 
in chemical composition and defect structures and densities 
causes significant intracrystal variation of diffusivity. If so, dif-
ferent domains in a given fluorite crystal may have different 
closure temperatures and single-fragment ages are thus influ-
enced by variable helium loss, resulting in the large age scat-
ter observed in the data. This point is of principle importance 
for FHe thermochronology and will be discussed in more 
detail in a forthcoming paper.

5.  Analytical uncertainty: The precision of He, U, Th, and 
Sm measurements can be estimated by repeated measure-
ment of certified reference materials. In case of our fluorite 
fragments, the amounts of actinides and Sm are considerably 
less compared to the routinely dated apatite and zircon crys-
tals. The masses of these elements were typically below 1 ng, 
often close to the detection limit as mirrored by the high rela-
tive standard error values (App. 2). This is a consequence of 
the single-fragment approach. By increasing the dated mass 
of fluorites by multifragment technique, the analytical uncer-
tainty would be probably reduced.

From the biasing factors listed above, only the analytical 
uncertainty can be estimated numerically. A quantitative esti-
mation of the contributions from the other four factors is not 
feasible. Due to the typically asymmetric character of the 
single-aliquot FHe age distributions we prefer to express the 
averages by using locality medians as detailed in the following 
discussion. The right-hand asymmetry of the distributions has 
no diagnostic meaning in this approach. The He and radioac-
tive element measurements have assumable Gaussian error 
distributions; their division (alike the age equation) results in 
a lognormal-like distribution with the long tail toward older 
ages. The other biasing factors (1) to (5) are usually also posi-
tively skewed and they are superimposed on the analytical 
uncertainty resulting in the total errors.
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Fig. 6.  Linear discrimination of polymetallic (black) and Sn-W (white) 
fluorite in ternary diagram using REE elements La, Gd, and Er.
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Geological meaning of fluorite (U-Th-Sm)/He ages

In general, low-temperature thermochronology-like fission 
track and (U-Th-Sm)/He methods yield ages that can be clas-
sified into three categories following the approach of Wagner 
(1972):

1.  If the mineral experienced rapid cooling immediately 
after its formation, then the undisturbed thermochronometer 
accumulates the products of radioactive decay and the mea-
sured age expresses a formation age. This scenario is typical 

for volcanic rocks. However, low-temperature thermochro-
nology of hydrothermal mineralization may also yield forma-
tion ages when the orebody experienced rapid cooling and 
was not influenced by a later thermal overprint.

2.  If the mineral experienced longlasting cooling after for-
mation (or after a high-T event that caused complete reset), 
then the radioactive decay products disappear from the min-
eral until the system finally cools below the closure tempera-
ture of the given thermochronometer. Such cooling ages are 
typical for metamorphic units and the age provides a datum 

N

Ma

0 50 100 150 200 250 300
0

10

20

30

40

Dörfel

n = 42
104.5 ± 7.4 Ma
eU = 0.94 ppm

Frohnau

n = 30
80.6 ± 9.2 Ma

eU = 0.61 ppm

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

Ehrenfriedersdorf

Horni Krupka

n = 19
79.0 ± 10.4 Ma
eU = 0.71 ppm

0 50 100 150 200 250 300
0

5

10

15

20

Lauta

n = 35
111.7 ± 10.3 Ma
eU = 1.41 ppm

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Sadisdorf
n = 20

234.4 ± 15.9 Ma
eU = 9.01 ppm

Ma

Ma

0 50 100 150 200 250 300
0

5

10

15

20

Zinnwald

n = 33
109.7 ± 10.1 Ma

eU = 3.81 ppm

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

n = 54
109.7 ± 4.5 Ma
eU = 0.43 ppm

0 50 100 150 200 250 300
0

10

20

30

40

50

60

N N

Fig. 7.  Increasing scatter plot of the single-fragment fluorite (U-Th-Sm)/He ages. eU values (effective uranium concentra-
tion, a parameter that weights the decay of the two parents for their alpha productivity, computed as [U]ppm + 0.235 * [Th]
ppm) vary between 0.43 and 9.01 ppm. The ages refer to the median and its respective confidence interval for each locality 
(Table 1).



	 FLUORITE THERMOCHRONOLOGY OF TIN AND POLYMETALLIC DEPOSITS	 2035

when the sample passed the temperature range of the so-
called partial annealing zone (nuclear tracks) or partial reten-
tion zone (He thermochronology).

3.  Complex thermal histories result in mixed ages when 
one or more thermal events cause only partial loss of decay 
products. This is characteristic for slightly (re-)heated forma-
tions, for instance, shallow burial in sedimentary basins or 
host bodies of hydrothermal deposits, when the temperature 
and the effective heating time of the hydrothermal activity 
were not sufficient for total reset. In this case, measured ages 
are younger than the formation age, but they do not express 
the age of any particular distinct cooling event.

Despite the high variability in mineral paragenesis, chemi-
cal composition, real structure, internal textures, and forma-
tion age of the fluorite samples, there is an overall consistence 
in the single-fragment age distributions for six of the seven 
studied localities. The first step in the evaluation of our FHe 
ages is the comparison of the low-temperature age constraints 
to the known formation ages. In case of fluorites from Sn-W 
mineralizations, the formation ages are certainly late Variscan, 
ca. 325 or 300 Ma, according to Romer et al. (2007, 2010a) or 
Kempe et al. (2004), respectively. The locality medians of the 
FHe ages, however, are mainly Cretaceous (112–79 Ma). Only 
the Sadisdorf site yields an older Triassic age (234 Ma), but 
this age is also significantly younger than Variscan. Therefore, 

an interpretation of the FHe ages from the late Variscan Sn-W 
deposits as formation ages must be rejected. 

In case of fluorites from the younger, polymetallic min-
eralizations the situation is less clear because there are no 
paragenetic or textural evidences on their formation ages. 
Furthermore, the isotope geochronometers used in former 
studies indicate a wide spread of (frequently mixed) ages 
(see Fig. 2a). Thus, the formation age of the veins is hardly 
known. The fluid inclusion data indicate that the minimum 
formation temperature of fluorite in Mesozoic mineraliza-
tions of the central Erzgebirge, including Lauta and Ehren-
friedersdorf, was in the range between 200° and 320°C (Jung 
and Meyer, 1991; Klemm, 1994; Seifert et al., 1994). This 
temperature range can perform nearly complete He reset in 
probably already-existing fluorite crystals when the duration 
of effective heating time of the hydrothermal activity exceeds 
ca. 500 years (estimated according to Arehart et al., 2003). 
This is a conservative estimate for the time span of the activ-
ity of a fluid mobilization system (e.g., Goldfarb et al., 1991; 
Yardley and Cleverley, 2013). This implies that the FHe ages 
determined that polymetallic deposits should be interpreted 
as cooling ages. 

The interpretation of the median FHe ages from six locali-
ties as Cretaceous cooling ages is further supported by some 
recent literature data from the region. Siebel et al. (2010) 
studied the thermal history in the intracontinental Danube 
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fault zone near Regensburg, Germany, located to the south-
west of the Erzgebirge, by a multichronology approach. Few 
FHe ages obtained from fluorite samples of the Kittenrain 
fluorite vein deposit spread around 130 to 110 Ma and were 
interpreted as a result of partial reset of the isotope system 
during reactivation of the Danubian fault during the Creta-
ceous, while the fluorite mineralization is interpreted to be 
late Variscan in accordance with the late Variscan age of the 
primary pitchblende formation in the region. We note here 
the analogy to the late Variscan age and remobilization of U 
mineralization in the Erzgebirge region.

CL imaging reveals alteration textures in the fluorite crys-
tals, which points to secondary processes at elevated tempera-
tures. If the latest, fluorite-generating hydrothermal phase is 
close to the time of the thermal climax of the main mineral-
ization period then the FHe age practically reflects the age 
of the ore-forming process. Recently, Ostendorf et al. (2014) 
performed direct age determination on the Mesozoic polyme-
tallic or fluorite-barite mineralization at Freiberg, Germany, 
using the Rb-Sr isochron method on sphalerite. The reported 
age of 113 ± 4 Ma is in accordance with or slightly predates 
our Cretaceous FHe ages on the Mesozoic mineralization 

elsewhere in the Erzgebirge region (Table 1). Thus, the inter-
pretation of Cretaceous FHe ages as formation ages cannot 
be rejected completely. Moreover, the FHe ages suggest that 
the Mesozoic thermal event terminated before latest Creta-
ceous, i.e., at around 80 Ma. Whether this thermal event is 
caused by hydrothermal activity has to remain unsettled in 
this case. A later Tertiary overprint is not recognized by the 
FHe method. This result is consistent with observations from 
apatite (U-Th)/He data (Wolff et al., 2015).

The four Sadisdorf fluorite samples gave consistent and 
considerably older (U-Th-Sm)/He ages than those from the 
other mining districts (Table 1). The Triassic FHe age can be 
interpreted in two ways. The first option is that this deposit 
experienced shallow post-Variscan burial and was only weakly 
affected by the Mesozoic thermal events. Thus it experienced 
minor rejuvenation from the original late Variscan age due to 
the weaker Mesozoic overprint. Alternatively, we can assume 
that the overprint is uniform in the region, but this fluorite 
has anomalous helium diffusivity behavior with higher closure 
temperature resulting in only minor helium loss during the 
Mesozoic thermal event. In any case, as we cannot assign a 
well-defined Triassic tectono-thermal event to this site—this 
age is interpreted as a mixed age.

The oldest single-fragment ages of the likely bimodal data 
sets from Frohnau and Ehrenfriedersdorf (three fragments 
with FHe ages between 241 and 297 Ma; see Fig. 8 and App. 2) 
raise the question whether the fluorites of the tin and polyme-
tallic ore deposits have kept some memory of their formation in 
the late Variscan. This would be possible when low He diffusiv-
ity in some crystal domains have kept the old age information 
despite of some Mesozoic thermal overprint. These old FHe 
ages are in accordance with the formation age of the Sn-W 
mineralization in the western Erzgebirge constrained earlier 
by the zircon U-Pb method (Kempe et al., 2004). Such inter-
pretation of the few older ages would also support a formation 
of at least a part of the polymetallic ore mineralization already 
in the late Variscan, probably shortly after the Sn-W deposits.

Relationships to other, well-established thermochronometers

The range of the defined median FHe ages corresponds well 
with the apatite (U-Th-Sm)/He (AHe) ages from the same ore 
districts (Figs. 2b, c, 8; Wolff et al., 2015). In the central block 
of the Erzgebirge, between the Gera-Jachymov and Flöha 
faults, as well as in the Zinnwald district, the apparent FHe 
ages and the apparent AHe ages are largely similar. Only the 
FHe ages from Sadisdorf samples are significantly older than 
the corresponding AHe ages (see discussion above). How-
ever, the AHe ages show a heterogeneous distribution in the 
study area (Fig. 8; Wolff et al., 2015). The data has been inter-
preted to reflect three major tectonic blocks with different 
thermal histories. Following the exhumation to a near-surface 
position after the Variscan orogeny the Erzgebirge basement 
suffered a Permo-Mesozoic burial temperature reaching ca. 
80° to 100°C, while the sedimentary cover thins out toward 
north. The tectonic blocks are locally superposed by hydro-
thermal activity along well-defined pathways corresponding 
to the known vein deposits (Wolff et al., 2015). This pattern 
suggests a localized character of thermal anomalies that pref-
erentially culminates in the ore districts. The resulting time-
temperature conditions have caused a total reset of large 
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parts of fluorite in most of the fluorite-bearing ore districts 
but possibly only a partial reset of the fluorite sample from 
the Sadisdorf deposit. Likely, the Erzgebirge did not suffer a 
single overall penetrative heating event.

The closure temperature of the FHe system was estimated 
at 170° and 60°C (Evans et al., 2005; Pi et al., 2005). Ongo-
ing experiments point to the lower end of this closure tem-
perature range for the fluorites analyzed herein. Even though 
these closure temperatures are still to be verified, it is notice-
able that our new FHe age data not only overlap with the 
previously published AHe ages (Figs. 2c, 8) but also with the 
youngest hydrothermally reset zircon He ages in the Erzge-
birge (ca. 134–112 Ma; Wolff et al., 2015). This as well sug-
gests a closure temperature for the fluorite system just within 
the range reported, below the zircon He system (ca. 180°–
160°C, Reiners et al., 2002) and similar to or slightly higher 
than the apatite system (ca. 80°–60°C, Farley, 2000).

Modeling of the thermal history by FHe age data

A measured FHe age, like any (U-Th-Sm)/He age, is the 
result of a thermal evolution path where the radiogenic helium 
production and the temperature-driven diffusional loss of 
helium (e.g., McDougall and Harrison, 1988). The concept of 
closure temperature (Dodson, 1973) describes the accumula-
tion of daughter isotopes and the evolution of the age when 
the geologic formation is cooling monotonously. However, 
the description of complex thermal histories requires a more 

dynamic evaluation procedure that considers the known con-
straints of the regional thermal evolution and also the kinetic 
parameters of the dated mineral-method pair. Typically, apatite 
and zircon FT and (U-Th-Sm)/He thermochronological data 
supply the major input for the modeling of the low-tempera-
ture thermal history. In our study, the modeling is based, for 
the first time, on fluorite He ages and diffusion parameters.

For modeling of the thermal history, the HeFTy software 
(Ketcham, 2005) was used. Data from two characteristic min-
ing sites from the central and eastern Erzgebirge were selected 
for this evaluation (Ehrenfriedersdorf and Zinnwald, respec-
tively). Beyond FHe data, apatite fission track ages and track 
length distributions were available for Ehrenfriedersdorf, while 
for Zinnwald a wider temperature range was covered by zir-
con and apatite (U-Th-Sm)/He and apatite fission track data 
(samples A6 and D4, respectively; see Wolff et al., 2015). The 
helium diffusion parameters for fluorite have been estimated 
to be Ea = 33 kcal/mol and log D0/a2 = 4.0  s–1 according to 
our preliminary measurements. These values are in accordance 
with the published values of Ea = 30.5 kcal/mol and log D0/a2 
= 4.9 s–1 (Evans et al., 2005). The resulting time-temperature 
paths are covered by envelopes and presented in Figure 10.

Results indicate that the thermal histories calculated from 
the fluorite (U-Th-Sm)/He data (Fig. 10, top) are quite simi-
lar to those calculated using well-established apatite (+ zir-
con) data (Fig. 10, bottom). The apatite- and zircon-based 
modeling yields a slightly narrower range of acceptable 
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time-temperature envelopes compared to solely FHe-based 
modeling. This is to be expected and relates to the fact that the 
AFT data are associated with track length measurements that 
supply more parameters to constrain the thermochronologi-
cal modeling. We conclude that thermal modeling of the fluo-
rite (U-Th-Sm)/He data using HeFTy software and diffusion 
parameters determined on the dated fluorite crystals reveals 
geologically meaningful thermal histories that are largely simi-
lar to those derived by other thermochronological data.

Methodological outlook

In order to evaluate the applicability of the FHe method, a 
conservative approach has been chosen by analyzing single-
fragment aliquots. In this way, we aimed to detect the limits of 
the applicability of the method. Our approach allows an evalu-
ation of the effects of zonation and sample heterogeneity. The 
analysis of multifragment aliquots would be a more steady and 
pragmatic approach for further studies. This has been simu-
lated by an n-fold validation, randomly creating multifragment 
aliquots from the single-fragment data. Using five-fragment 
aliquots the standard errors calculated for the localities are 
reduced significantly from the range of 16 to 5 Ma to a range 
between 2.9 and 0.8 Ma (see comparison in Table 2). These 
much narrower confidence intervals are largely similar to the 
typical error range of other low-temperature geochronologi-
cal methods, and the multifragment technique would make 
fluorite (U-Th-Sm)/He thermochronology suitable for routine 
applications. On the other hand, the chemical variability as 
an indicator of the heterogeneity and zonation of the dated 
minerals gained by the single-fragments analyses is lost using 
the multifragment aliquot technique.

Conclusions
1.  The fluorite (U-Th-Sm)/He method is well suited for ore 

deposits and hydrothermally altered regions where the well-
established apatite-based low-temperature thermochronom-
eters cannot be applied due to the high solubility of apatite in 
acid environments. 

2.  Modeling of FHe thermochronological data using dif-
fusion parameters determined on the dated fluorite samples 

yields geologically meaningful thermal histories similar to 
results based on other well-established thermochronological 
methods.

3.  The closure temperature range (or partial retention 
zone) of the FHe thermochronometer of chemically non-
extreme fluorite (i.e., REE + Y <3,000 ppm) appears to be 
similar or somewhat higher compared to the He closure tem-
perature in apatite and lower than the (U-Th-Sm)/He closure 
temperature in zircon. However, further studies on the diffu-
sion behavior of He in fluorite are needed.

4.  FHe data from six mining districts of the Erzgebirge 
indicate that the thermal activity in the studied area termi-
nated before latest Cretaceous. A later, Tertiary thermal over-
print is not recognized.

5.  The Cretaceous thermal event was not able to reset the 
FHe thermochronometer all over the entire Erzgebirge as 
indicated by mixed ages for the Sadisdorf tin deposit.

6.  The oldest FHe ages measured in a few aliquots might 
indicate that some polymetallic vein deposits in the Erzge-
birge were generated already in the late Variscan.
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