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Abstract The thermotectonic evolution of the East
Alpine Rhenodanubian flysch zone (RDFZ) and the
collisional history along the orogenic front is recon-
structed using apatite fission-track (FT) thermochro-
nology. The apatite FT data provides evidence for a
burial depth of at least 6 km for the samples, which
were totally reset. Burial was not deeper than 11 km,
since the zircon fission-track system was not reset.
The RDFZ represents an accretionary wedge with a
complex burial and cooling history due to successive
and differential accretion and exhumation. The sed-
imentary sequences were deposited along a convergent
margin, where accretion started before Maastrichtian
and lasted until Miocene. Accretion propagated from
a central area (Salzburg-Ybbsitz) both to the west
and to the east. In the west, accretion lasted from
Middle Eocene to Early Oligocene, reflecting under-
plating of the RDFZ by the European continental
margin sediments. In the east, where three nappes
(Greifenstein, Kahlenberg and Laab nappes) can be
distinguished, the exhumation started between Late
Oligocene and Early Miocene. The Kahlenberg and
Laab nappes show total resetting of the apatite FT
ages, while in the Greifenstein nappe there is only
partial resetting. According to a new paleogeographic
reconstruction, the Kahlenberg and Laab nappes were
placed on top of the Greifenstein nappe by an out-of-
sequence thrust.
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Introduction

The Rhenodanubian flysch zone (RDFZ) is very
important for any geodynamic reconstruction of the
pre- and syn-collisional history of the Eastern Alps.
Its sedimentary characteristics and its clastic material
provide information about its geotectonic position.
The aim of this apatite fission-track (FT) study is to
reconstruct the thermal evolution of the Rhenodanu-
bian flysch zone during and after collision of the
Alpine orogen, and to evaluate the consequences for
the paleogeographic reconstruction.

Geological setting

The Rhenodanubian flysch zone forms a ~500-km-long
and narrow unit along the northern front of the East-
ern Alps (Fig. 1). It contains mostly turbiditic
sequences of Early Cretaceous to Middle Eocene age
(Fig. 2), which were deposited in a basin with partly
oceanic and partly thinned continental crust (Egger
1990, 1992; Schnabel 1992). Schnabel (1992) suggested
that the Ybbsitz klippen zone (YKZ), which is corre-
lated with the St. Veit klippen zone and the Kahlen-
berg nappe (Schnabel 1979, 1992; Exner and Kirchner
1982), contains the oceanic basement of the Rhenoda-
nubian flysch trough. The Ybbsitz klippen zone con-
sists of a Jurassic deep-sea facies with radiolarites,
mafic/ultramafic rocks, pillow basalts, serpentinites
and ophicalcites, and a flysch cover of Cretaceous age
(Schnabel 1979; Ruttner and Schnabel 1988; Decker
1990).

The Rhenodanubian flysch zone belongs to the
Penninic paleogeographic realm of the Alps, but its
exact position is still a matter of discussion (e.g. Hesse
1973; Frisch 1979; Winkler et al. 1985; Egger 1992;
Faupl and Wagreich 1992; Oberhauser 1995). It forms
a north-vergent fold-and-thrust belt and is sandwiched
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Fig. 1 Geological map of the Central and Eastern Alps showing

between the overlying nappe stack of the Northern
the position of Rhenodanubian flysch and Ybbsitz klippen zone

Calcareous Alps and the underlying folded and parau-
tochthonous Molasse zone. The RDFZ is the product
of thin-skinned tectonics, which also incorporated the

Epoch/Stage | Main Flysch/Greifenstein nappe | o ven iimerie, | Laab nappe Ultrahelvetic units of the southern European margin.
E— The Rhenodanubian flysch zone is strongly sliced
[ Bartonian and tectonically disrupted. The Main Flysch nappe
=
o] Z| et 3 Ascbach stretches over the whole length of the zone from the
W— . . .
. ﬁ S \amve|  Rhine River to the Danube River. In the central and
presian ine ormation . . . .
= E— Autietiog P E4m| Western part, it has been subdivided into several sub-
Z[ Danian . _‘ o] Nappes (Hesse 1972; von Rad 1972; Egger 1989; Mat-
Mometichtion Altlengbach Formation Fséf;gtlﬂ)i E—— ) 1998). In the Wienerwald area, thp RDEZ is sub-
d1V}ded_ into three; nappes. The Gre_lfenstem nappe,
Campanian Kaumber which is the equivalent of the Main Flysch nappe
. Kahlenberg ¥ ore . . .
<——— Zementmergel Formation Formation | ' ormauon (Schnabel 1992), is overlain by the Laab nappe in the
Coniacian 3
B ))// south and by the Kahlenberg nappe in the southeast
Cenomanian Reiselsberg Formation 3 (Fig. 3). The latter occupies the highest structural
100 —| - 5 position (Prey 1983). These tectono-stratigraphic units
Albian Gault’ Flysch ~ . . .
are assumed to have been deposited in separate basins
. (e.g. Faupl and Wagreich 1992; Schnabel 1992; Faupl
Aptian Neokom Flysch
B 1996).
Hauterivium

Fig. 2 Simplified stratigraphic scheme of the Rhenodanubian
flysch zone after Prey (1980), Plochinger and Prey (1993), Egger
(1995) and Faupl (1996)
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Fig. 3 Schematic arrangement of the Wienerwald nappe pile
after Prey (1980). NCA Northern Calcareous Alps, UH Ultra-
helvetic units, KN Kahlenberg nappe
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Laboratory, experimental and calculation pro-
cedures of the fission-track and microprobe measure-
ments, as well as the apatite fission-track distributions
are described in more detail in Trautwein (2000).

Methods

The apatite FT dating method is widely used to date
the low-temperature cooling history of rocks (e.g.
Wagner and Van den haute 1992). In the case of sed-
imentary sequences that were buried and heated
above ~100°C, their thermal history can be con-
strained. Fission-track length measurements help to
interpret the apparent apatite ages, and to elucidate
the basin evolution (Green 1986). Since the apatites of
the Rhenodanubian flysch units are thermally reset, a
possible thermal evolution of the RDFZ can be recon-
structed.

FT ages were determined using the external-detector
method (Gleadow 1981). A pooled age is calculated in
the case of a homogeneous population, i.e. where the
sample passes the y° test (Galbraith 1981). If it fails the
% test, a mean age is calculated (Green 1981).

The study of FT length distributions in apatite has
the potential for providing constraints on the time-
temperature history of a rock under low-temperature
conditions. Progressive annealing during increasing
temperature reduces the length of the fission tracks
until tracks are totally erased. In thermally over-
printed sedimentary basins, the ratio of inherited to
newly formed tracks depends on the amount of
annealing.

The apatite samples were counted with x1000 mag-
nification using immersion oil. For the track-length
measurements Tints (track-in-track) and Tincles
(track-in-cleavage) were considered (Bhandari et al.
1971).

In order to judge whether the variation in the fis-
sion-track ages is dependent on differential annealing
behaviour due to differences in chemistry, the fluorine
and chlorine contents were measured by electron
microprobe. The concentrations of F, Cl and OH
influence the annealing temperature. Fluorine apatite
is much less resistant to annealing than chlorine apa-
tite (Green et al. 1986, 1989; Green 1988). The analy-
ses were performed on a Cameca SX51 spectrometer
at an acceleration voltage of 15 kV, a probe current of
20 nA and a defocused spot of 20 um.

Results

Thirty-six samples were collected in Cenomanian to
Eocene units of the Rhenodanubian flysch zone
including a picritic dyke, which intruded into mid-Cre-
taceous strata of the RDFZ. Two samples were taken
from units of the Ybbsitz klippen zone (Table 1).

The apatite populations of the sedimentary units
contain both rounded and subhedral grains. Some
crystals show overgrowth rims. Most apatites are clear
and colourless, but reddish-brown and greyish-black
varieties are also common. The apatite grains of the
picritic dyke (sample no. 36) are of subhedral shape.
They show brownish circular tubes, which are charac-
teristic of volcanic apatites.

Apatite fission-track ages

Apatite FT age determination was carried out on 36
samples from the Rhenodanubian flysch zone and two
samples from the Ybbsitz klippen zone (Table 1,
Fig. 4a). The determined ages are so-called apparent
ages. Depending on the time-temperature evolution,
they reflect cooling of the sediments, mixed ages with
an inherited history, or purely inherited ages without
overprint (Fig. 4a).

The apatite FT ages of the Main Flysch/Greifen-
stein nappe vary along strike from west to east. Mio-
cene and Oligocene ages are found for the western-
most samples and samples along the southern margin
of the Main Flysch nappe (Fig. 4a, b). Apatite ages
from the Rhenodanubian flysch zone along the Rhine
valley (~18 and 19 Ma; Rahn, personal communica-
tion) are in good agreement with the data presented
here from the westernmost part of the RDFZ. In the
central part and in the vicinity of the Ybbsitz klippen
zone (YKZ), the FT ages become older (Late Creta-
ceous to Eocene). Apatite FT dating in the central
RDFZ was earlier performed by Hejl and Grundmann
(1989), using the population method. In their study,
they determined an apatite FT age of 106 Ma for the
same locality as sample no. 14 in this study. The sig-
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Fig. 4 a Apatite fission-track ages in the Rhenodanubian flysch
and Ybbsitz klippen zone, grouped on the basis of their burial
depth; APAZ apatite partial annealing zone; b age distribution
in the Rhenodanubian flysch and Ybbsitz klippen zone; ¢ popu-
lation density curves (Hurford et al. 1984) of representative sam-
ples from above, within and below the APAZ

nificant difference in age might be due to the different
methods used. At the eastern end of the RDFZ in the
Wienerwald area, the apatite fission-track ages vary
between 77 and 136 Ma in the Altlengbach and Grei-
fenstein formation of the Greifenstein nappe.

The Cenomanian to Maastrichtian formations of
the Kahlenberg nappe display apatite FT ages
between 18 and 25 Ma. The apatite fission-track age
of the picritic dyke of this nappe is 27 Ma (sample no.
36). Late Cretaceous and Early Tertiary lithologies of
the Laab nappe consistently give Early Miocene FT
ages of 19 to 23 Ma. The samples from the Ybbsitz
klippen zone belong to two different stratigraphic
horizons. They give ages of 41 Ma in the Hubberg for-
mation and 23 Ma in the Steinkeller formation.

Fission-track length distributions in the apatite
samples

FT lengths have been measured in 28 apatite samples
(Table 1). The detailed track-length distributions are
presented in Trautwein (2000). Three different types
of track-length distributions are distinguished: two
unimodal distribution types with negative and positive
skewness, respectively, and one bimodal type. The
mean track length of the unimodal distribution with
negative skewness ranges from 13.4 to 14.9 ym with a
standard deviation between 1.2 and 2.1 um. According
to Gleadow et al. (1986), this kind of track-length dis-
tribution is typical of an intermediate to fast cooling
history. In the case of a sedimentary basin series, this
observation reflects cooling after total reset (Green
1986). The unimodal type with positive skewness is
characterized by lengths of 11.1 to 12.5 um with stand-
ard deviations in the narrow range of 1.7-1.9 ym. Fol-
lowing Green (1986), it can be suggested that such
length distributions are caused by a prolonged stay in
the partial annealing zone followed by fast cooling.
The bimodal type varies between mean lengths of 11.9
and 13.3 ym with standard deviations of 2.0-2.7 um. A
bimodal distribution gives evidence for a more com-
plex thermal history. The apatite ages of the samples
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Fig. 5 Apatite FT ages versus chlorine content. No correlation
of chlorine concentration and age is found. Bold diamonds sed-
imentary units, open squares picritic dyke

represent mixed ages and cannot be correlated with a
geologic event of the rocks. The bimodality is caused
by either a partial overprint or a prolonged stay in the
partial annealing zone.

Fluorine and chlorine contents of apatites

The fluorine and chlorine contents were measured by
electron microprobe in six apatite samples. The CI
content of the apatites is generally low (Fig. 5). Only
few grains with substantial CI content up to 0.56 wt%
are present. The majority are almost pure fluorine
apatites with minor contents of Cl and OH. The apa-
tites of the picrite dyke have a mean Cl content of
0.14 wt%. They are of a 1:1 fluorine-hydroxyl com-
position.

The apatite grains show no correlation of composi-
tion with the single grain ages (Fig. 5). Therefore, the
differences in age are only due to different thermal
histories of the samples. This result is generally
assumed for all samples.

Discussion and conclusions

Thermochronological significance of the apatite
fission-track data

Due to incorporation of the RDFZ and YKZ into an
Alpine-type fold-and-thrust belt, the two zones under-
went burial and thermal overprint. The apatite FT

ages show no correlation with the stratigraphic age of
the samples. Kuckelkorn and Hiltmann (1992) found
no correlation between the stratigraphic age and the
maturity of organic matter in the western part of the
RDFZ. Therefore, the thermal event affected the
RDFZ during and after thrusting.

The apatites of the Kahlenberg and Laab nappe
are consistently thermally overprinted. The ages range
between 18.2 and 26.7 Ma. The age data set indicates
that the samples were buried beneath the apatite par-
tial annealing zone (APAZ 70 to 125°C, after Glea-
dow et al. 1983) and are totally reset (Fig. 4; ‘below
APAZ’). Vitrinite reflectance data of Gmach (1999),
measured in the same units, range between 0.6 and
0.97% Rr and are consistent with the thermal over-
print determined by the apatite FT data.

The Main Flysch/Greifenstein nappe is character-
ized by widely scattering apatite ages (16.4 to
136.3 Ma, mean track lengths of 11.1 to 14.0 pm). The
nappe shows rejuvenated apatite ages (16.4-33.9 Ma)
in the west and along the southern margin of the
RDFZ, where samples underwent total annealing
before cooling (Fig. 4). Vitrinite reflectance values
vary between 0.59 and 0.7% along the southern mar-
gin of the western RDFZ (Petschick 1989). In the cen-
tral and eastern part of the RDFZ, mixed ages
(41.3-92.9 Ma) reflecting moderate thermal overprint
within the APAZ are common (Fig. 4). The apatite
FT ages of these samples are younger than their sed-
imentation age.

Two further age groups are present, which contain
age spectra with several age populations. One group is
characterized by mean apatite FT ages older than the
sedimentation age. The age spectra consist of two age
populations with one age population younger and one
older than the depositional age of the corresponding
sample. The track-length distributions of these sam-
ples contain a high portion of shortened tracks. There-
fore, heating into the APAZ can be assumed for these
samples. In the Greifenstein nappe, this is in good
agreement with vitrinite reflectance data (0.34-0.5%
Rr; Gmach 1999).

The other group is represented by samples nos. 1
and 22, which show age spectra with no population
younger than the sedimentation age. These samples
were not buried into the partial annealing zone by a
post-depositional event (Fig. 4). Thus, the grain ages
provide information about the source rocks. The vit-
rinite reflectance value of the Wienerwald region
(sample no. 22) is 0.36% Rr (Gmach 1999). The inter-
pretation of the detrital ages is possible with the help
of the detrital zircon FT ages from the same samples
(Trautwein 2000).

The two samples of the Ybbsitz klippen zone indi-
cate different levels of burial. There is no vertical
trend, since the sample of the stratigraphically older
Hubberg formation shows partial resetting, and the
sample of the Steinkeller formation total resetting
(Fig. 4).



Thermal modelling

Track-length distributions and FT ages were used to
model the thermal history of 28 samples. Modelling
was performed with the computer program AFTSolve
of Ketcham et al. (2000), assuming all apatites to rep-
resent fluorine apatites.

The track-length data confirm the assumptions
made on the basis of the apparent apatite ages, with
two exceptions. Sample nos. 16 and 20 from the Rei-
selsberg formation pass the > test, although their
length distributions are clearly bimodal, which points
to a complex thermal history. Modelling displays
either burial in the APAZ or below the APAZ
(Fig. 4a).

In the Kahlenberg and Laab nappes, all samples
show a similar thermal history. The pre-sedimentary
history of the apatite grains was erased by burial to
depths below the APAZ. The subsequent cooling rate
was ~20°C/Ma (Fig. 6a), which is reflected by mod-
erate track-length shortening. Cooling started in Late
Oligocene/Early Miocene times.

In contrast to the uniform thermal history of the
Kahlenberg and Laab nappes in the Wienerwald area,
the Main Flysch/Greifenstein nappe shows a heteroge-
neous cooling history. The thermal evolution is rather
complex, and changes both along strike from west to
east and from south to north are observed. The differ-
ent time-temperature paths reflect the complexity of
the flysch nappe pile and its evolution. Our data indi-
cate that exhumation started in the central part of the
RDFZ and propagated to the west and the east.

In the central part of the RDFZ, rocks of the Rei-
selsberg formation show local variations in age and
degree of annealing. For two samples (12 and 14),
modelling suggests burial into the APAZ (Fig. 6b),
while there still was ongoing sedimentation in the
flysch basin. Cooling already started in Late Creta-
ceous times (75-70 Ma), which is confirmed by model
runs using the genetic algorithm of the Monte Trax
program (Gallagher 1995).Three other samples of the
Reiselsberg formation (nos. 13, 15 and 16) were
buried much deeper and the apatite ages and track-
length distributions reflect total reset. After maximum
burial, the rocks cooled below 70°C at a rate of
~10°C/Ma starting in mid-Eocene time (Fig. 7).

Maastrichtian rocks of the Altlengbach formation
in the central region are characterized by reaching a
maximum burial in the partial annealing zone (sample
nos. 6, 7 and 10). The fission-track ages and the length
distributions reflect only partial reset (Fig. 6¢). Cool-
ing started between 50 and 30 Ma (Fig. 7).

In Cenomanian rocks (sample nos. 3 and 4) from
the western part of the flysch zone, accelerated cool-
ing from below the APAZ started around 40-30 Ma
(cooling rate of ~6°C/Ma) (Fig. 7). For the western-
most sample (no. 5), which was also buried beneath
the partial annealing zone, cooling initiated by 17 Ma
at the latest (cooling rate of ~6°C/Ma) (Fig. 7).
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In the eastern part of the Main Flysch nappe, ther-
mal modelling reveals a cooling history that started
around 45-36 Ma (Fig. 7), with varying cooling rates.
The rocks of the Reiselsberg formation and of the
Altlengbach formation (sample nos. 19 and 20) were
buried below the APAZ and experienced total reset.
The Late Maastrichtian sample of the Altlengbach
formation (sample no. 18) did not suffer complete
reset, but only reached the partial annealing zone. A
similar cooling history as determined in the Kahlen-
berg and Laab nappes is found for sample no. 17 of
the Main Flysch nappe.

The Greifenstein nappe (sample nos. 23 and 24)
and sample no. 21 of the Main Flysch nappe under-
went a thermal history different from the Kahlenberg
and Laab nappes. The sediments experienced continu-
ous burial and heating to 100 °C. Modelling suggests a
prolonged stay in the partial annealing zone followed
by cooling with a rate of ~4°C/Ma starting around
20-14 Ma.

The sample of the Hubberg formation of the YKZ
(no. 38) displays burial into the partial annealing zone.
Cooling at a rate of ~2°C/Ma starts around 60-50 Ma.
The sample of the Steinkeller formation (no. 37)
shows a similar cooling pattern to that observed in
samples of the Kahlenberg and Laab nappes with the
same stratigraphic age. Cooling started after total
resetting around 30-27 Ma at a rate of ~10°C/Ma.

Evolution of the Rhenodanubian accretionary wedge
— nappe stacking and exhumation

Modelling of the FT data reveals a very detailed pat-
tern of burial and cooling histories within the studied
rock units (Fig. 8). The burial depths of the sediments
vary along and also perpendicular to the strike of the
RDFZ and are not even uniform at the local scale
(Fig. 4a, c). The different cooling patterns of the sam-
ples can be explained by successive and differential
accretion and exhumation.

Following Hasebe et al. (1993), we assume a geo-
thermal gradient of 20°C/km for the Rhenodanubian
flysch wedge. In this case, the apatite data give
evidence for a minimum burial depth of ~6 km for
those samples which experienced total resetting of
apatite FT ages after sediment deposition (lower
boundary of APAZ at 125°C). Since the zircon FT
ages are not reset (Trautwein 2000), the exposed
flysch units did not reach the zircon partial annealing
zone (220-320°C, Tagami et al. 1998), i.e. they were
not buried deeper than ~11 km. A cover of the Rhe-
nodanubian flysch wedge by the structurally higher
Northern Calcareous Alps would result in an overbur-
den of 5-6 km. Adding of additional (now eroded)
material (NCA and Augenstein sediments; Frisch et
al. 2001) would lead to burial temperatures sufficient
for complete apatite FT annealing.

Our data show that nappe stacking processes were
active from Maastrichtian to Miocene times. Figure 7
compiles the modelled onset of cooling for the differ-
ent flysch slices. Our data suggest the following tec-
tonic evolution for the Rhenodanubian flysch zone.

In the central part of the Rhenodanubian flysch
zone, accretionary processes had already started in
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pre-Maastrichtian time, as cooling of the Reiselsberg
formation began at 75-70 Ma (Figs. 6b, 7, 8). The
data disprove previous assumptions that the Rhenoda-
nubian flysch was deposited in a dormant trench with-
out subduction activity during deposition (Hesse
1982), which lasted until Early Eocene in the central
area of the RDFZ (Egger 1989). On the contrary,
accretion in a subduction zone is indicated, as sug-
gested by Frisch (1978, 1979). An active basin setting
was also presumed by Hesse (1972). The Cenomanian
sediments were dragged down a subduction zone and
were underplated due to ongoing accretion (e.g.
Moore 1989; Platt 1986), which initiated steady cool-
ing and exhumation of this flysch slice during Maas-
trichtian times. Early accretion is also indicated for
the Hubberg formation sample from the Ybbsitz
klippen zone (Fig. 7).

Modelling of apatite FT data suggests that accre-
tion propagated from the Salzburg-Ybbsitz area to
the west and to the east. The time of incorporation of
the sediments into the wedge and thus their time-tem-
perature history along strike were different, as the
continental margin of the bending European plate was

711

neither straight (Malzer et al. 1993; Wagner 1998) nor
characterized by a homogeneous strength. This may
be due to the Bohemian spur, which actually pro-
truded beneath the Eastern Alps in the area around
Ybbsitz (Fig. 1). The Bohemian spur may have
reached the Alpine front already in Late Cretaceous
time.

In the Salzburg-Ybbsitz area, cooling of Cenoma-
nian to Early Paleocene rocks started in Middle
Eocene times (Fig. 7). West of Salzburg, cooling of
the Reiselsberg sediments started in Middle Eocene to
Early Oligocene time (Fig. 7). The Altlengbach sed-
iments in the central area and Campanian to Eocene
sediments of the RDFZ and the YKZ in the Ybbsitz
area show an onset of cooling in Late Eocene/
Early Oligocene time (Fig.7), due to the ongoing
process of accretion. We suppose that these ages
reflect the time of underplating (e.g. Platt 1986;
Moore 1989) of the RDFZ by the European continen-
tal margin, incorporating Ultrahelvetic slices into the
nappe stack.

In the Wienerwald region the exhumation of the
Kahlenberg and Laab nappes was initiated during the
Late Oligocene to Early Miocene, and in the Greifen-
stein nappe during the Early to Middle Miocene. This
is linked to foreland imbrications in the eastern
RDFZ that stopped in the Early Miocene (Wagner
1998). The evolution of the nappe stack in the Wien-
erwald area can be explained as follows.

From a detailed provenance study based on zircon
morphology and fission-track data, Trautwein (2000)
deduced a paleogeographic arrangement of the deposi-
tional areas of the RDFZ in the Wienerwald area,
which was already considered by Oberhauser (1995).
According to this reconstruction, the Laab basin (the
later Laab nappe) occupied the northernmost position
(Fig. 9a), since the zircon data reflect a source area
situated in stable Europe (e.g. Bohemian massif). The
Main Flysch basin was situated to the south of the
Laab basin. Sedimentation terminated in Paleocene
times in the southernmost area of the Main Flysch
basin (the later Kahlenberg nappe), and it was sealed
by overthrusting and incorporation into the accretion-
ary wedge. In the northern Main Flysch basin (the
later Greifenstein nappe) and in the Laab basin sed-
imentation lasted until Eocene, before the nappe was
incorporated into the wedge. The sedimentary
sequence was buried, and the apatites of the Laab and
Kahlenberg nappes experienced total annealing. To
place the Laab basin on top of the northern Main
Flysch basin, resulting in the present nappe configura-
tion with the Greifenstein nappe in the north over-
thrusted by the Laab and Kahlenberg nappes, an out-
of-sequence thrust is proposed (Fig. 9a). Figure 9b
depicts the evolution of the nappe pile on the basis of
other paleogeographical models, with the Laab basin
in a middle position (e.g. Faupl and Wagreich 1992).
The model presented in Fig. 9a is in accordance with
the zircon fission-track data (Trautwein 2000) and the
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apatite FT data of the present study and is therefore
preferred.

An additional influence on the exhumation of the
Wienerwald nappes is the large-scale E-W extrusion
that began during Early to Middle Miocene time (‘lat-
eral tectonic extrusion’, Ratschbacher et al. 1991;
Frisch et al. 1998). The ductile deformable sediments
of the RDFZ and the Molasse zone accommodated
part of the shear (Meschede and Decker 1993)
between the NCA, which experienced ~50% stretch-
ing, and the unstretched foreland basement. Lateral
extrusion was accompanied by an exhumation pulse,
as reflected in the Late Oligocene/Early Miocene
cooling paths of the flysch samples (Fig. 8).
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