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ABSTRACT: The discriminative power of four analytical approaches to
sandstone composition is evaluated with respect to the separation of
different formations and source areas. The case study is Cretaceous
synorogenic sandstones (litharenites) from the Eastern Alps of Europe,
which belong to four different formations and are derived from two
source areas. Methods evaluated are light-mineral analysis (petro-
graphic framework composition), heavy-mineral analysis, major-ele-
ment XRF analysis, and trace-element XRF analysis. The statistical
parameters calculated (percentages of well-classified samples, Mahal-
anobis distance) applying the logratio approach suggest that light-min-
eral analysis has a significantly lower discriminative power than the
other three methods. Taking into account the analytical expenditure
for data acquisition, trace-element analysis appears to be the most ef-
ficient method for discrimination of at least the sandstone units ex-
amined. Although based on a single case study, these results are inter-
preted to have a more general meaning with respect to sandstone dis-
crimination based on composition. Concerning sandstone provenance,
trace-element analysis provides a quick tool to estimate the discrimi-
native potential of a sample suite, i.e., the potential to discriminate
between contrasting source areas. If a provenance model already exists
and discriminate functions between contrasting source areas are cal-
culated, trace-element analysis is considered to be most efficient in cor-
rectly assigning an unknown sample to its source area. These results
cannot be extended to all kinds of sands and sandstones, but they cast
serious doubt on the belief that petrographic point-count methods are
the best approach to discriminate between sandstones.

INTRODUCTION

The complex topic of sandstone composition is treated in the literature
in several different ways concerning both analytical techniques and lines
of interpretation. Interpreting the composition of sandstones in terms of,
for example, their belonging to different lithologic units (e.g., Füchtbauer
1964), their derivation from different sources on both global (e.g., Potter
1978; Dickinson and Suczek 1979) and regional scale (e.g., van de Kamp
and Leake 1995), as well as contrasting climatic (e.g., Suttner et al. 1981)
or diagenetic (e.g., Milliken 1988) conditions requires the confirmation that
these sandstones display significant differences in composition.

The composition of sandstones can be ascertained in two fundamental
ways: petrographically (mineralogy and texture) or chemically. The pet-
rographic composition of sandstones generally is obtained by analyzing
their framework components using point-count techniques on thin sections
(e.g., Ingersoll et al. 1984). We refer to this method as light-mineral anal-
ysis, in contrast to heavy-mineral analysis. The latter constitutes a small
fraction (mathematically: subcomposition) of the whole-rock mineralogical
composition, but is usually treated separately because the data are obtained
by different analytical methods (e.g., Morton 1985). Point-count methods
on thin sections allow us to differentiate between primary detrital grains
and secondary diagenetic processes, e.g., authigenic phases and compac-
tion.

The chemical composition of sandstones provides whole-rock data. Ac-
cordingly, they do not allow a differentiation between detrital or diagenetic
origin of certain elements. XRF analysis of a powdered rock specimen is

the most widely applied analytical technique in the determination of the
major-element and trace-element chemistry of rocks (Rollinson 1993). Ma-
jor-element and trace-element analysis are here treated separately because
they are performed using partly different analytical methods. Trace-element
data constitute a small fraction of the whole-rock chemical composition.

Apart from cases in which one component is absolutely missing for one
sample group or the separation of groups is obvious because of very large
differences, the determination of significant differences between sandstone
compositions requires statistical analysis. All data mentioned are compo-
sitional data, which means that they are proportions, subjected to the con-
stant-sum constraint, and therefore should not be analyzed by standard
statistical methods (Aitchison 1986). Special techniques are necessary to
rigorously analyze compositional data, and several studies have already
demonstrated their usefulness (e.g., Butler and Woronow 1986; Rollinson
1992; Heins 1993; Cardenas et al. 1996; Weltje et al. 1996; Barceló-Vidal
et al. 1997).

The aim of this paper is to evaluate the discriminative power of four
different analytical approaches (light-mineral and heavy-mineral analysis
and major-element and trace-element analysis) to the composition of sand-
stones and relate the outcome to the analytical expenditure involved with
each method. The case study is a well-documented example of synorogenic
Cretaceous sandstones from the Northern Calcareous Alps in Austria (von
Eynatten et al. 1996; von Eynatten and Gaupp 1999). The applied statistical
methods take into account the specific nature of compositional data. Al-
though based on a single case study, the results are interpreted to have a
more general meaning with respect to the discrimination of sandstones
based on composition, with special emphasis on provenance discrimination.

CASE STUDY

Geological Setting

The case study used in this paper is Cretaceous synorogenic sandstones
from the Northern Calcareous Alps in Austria (Fig. 1A). The Cretaceous
orogeny of the Alps documents the early stages of convergence between
Africa-derived plates (Adriatic plate, Austroalpine microplate) and the Eu-
ropean plate, which were separated since the Early to Middle Jurassic by
the Penninic ocean (Fig. 1B). Ongoing convergence led to subduction of
Penninic oceanic crust in the Late Cretaceous and a final continent–conti-
nent collision in the Eocene (e.g., Froitzheim et al. 1996). In the Northern
Calcareous Alps (belonging to the Upper Austroalpine unit) the Cretaceous
is characterized by the formation of various nappes which were thrusted
onto each other top-to-the-northwest. Thrusting started in the southeast in
the latest Jurassic and subsequently propagated towards the northwest (Fig.
2).

The sandstones under investigation were deposited by turbidity currents
in elongated basins situated on individual nappes, with depositional axes
striking parallel to nappe fronts (piggy-back basins, cf. Ori and Friend
1984). Two source areas were distinguished in a previous study (von Eyn-
atten and Gaupp 1999): the first is situated to the southeast, the second to
the northwest of the depositional sites (Fig. 2). Both source areas were
found to be composed largely of Paleozoic metasediments, Mesozoic car-
bonates, and ultrabasic rocks, but the relative contribution of each of these
source rocks varied with time and between the two source areas. A distinct
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FIG. 1.—A) Structural sketch map of the European Alps with location of the study
area in the Northern Calcareous Alps (NCA). B) Paleographic sketch showing po-
sitions of major structural units at around Valaginian to Hauterivian time, 140–130
Ma (modified after Froitzheim et al. 1996, von Eynatten and Gaupp 1999). Stippled
line indicates position of cross sections from Figure 2. The present-day Northern
Calcareous Alps form the Upper Austroalpine (UAA) sedimentary cover, which was
thrusted over Lower Austroalpine (LAA) and Penninic units in Late Cretaceous to
Tertiary time.

difference between the two source areas is the exclusive occurrence of high-
pressure metamorphic rocks in the northwestern source area, as evidenced
by the chemistry of detrital blue amphiboles (glaucophane) and white mica
(phengite) in sandstones derived from this source (von Eynatten and Gaupp
1999). Rare blue amphiboles in sandstones derived from the southeastern
source area are chemically different in composition (crossite to riebeckite)
and white micas are exclusively muscovites (von Eynatten and Gaupp
1999).

The sandstones belong to four formations ranging in age from Valan-
ginian to Santonian (Fig. 3): the Rossfeld and Lech formations, which were
derived from the southeastern source area, and the Losenstein and Bran-
derfleck formations, which were derived from the northwestern source area
(Fig. 2). Macroscopically these sandstones often are quite similar, and their
regional distribution is obscured because of complicated tectonics in the
present-day nappe pile. On the other hand, these sandstones are important
recorders of Cretaceous synsedimentary tectonics (e.g., Gaupp 1982; Faupl

and Wagreich 1992). Thus, a quick tool is required to assign a given sand-
stone of ambiguous origin to its correct stratigraphic formation and source
area.

All of the sandstone formations are affected by postsedimentary nappe
tectonics, including faulting, folding, and, sometimes, boudinage of com-
petent sandstone layers. On microscopic scales this deformation is reflected
in considerable compaction and squeezing of soft lithoclasts. Illitization
and chloritization of fine-grained lithoclasts is also a commonly observed
feature (von Eynatten 1996). Calcite cements are derived from dissolution
of carbonate clasts and reprecipitation. Data on vitrinite reflectance and
illite crystallinity indicate that temperatures during the burial stage of the
sandstones did not exceed 150–2008C (e.g., Gaupp and Batten 1985). The
thermal overprint increases from northwest to southeast. Because of the
considerable diagenetic overprint, identification of individual grain types
cannot be as sophisticated as in sands and sandstones that were not affected
or only little affected, by diagenetic processes.

Sandstone Composition

From the Cretaceous sandstones described above a set of 52 sandstones
is available, which were analyzed by all of the four analytical methods.

On the basis of light-mineral data, all of the samples are classified as
litharenites following classifications of Zuffa (1980) and McBride (1963)
(von Eynatten and Gaupp 1999). The QmFLt diagram (Fig. 4) illustrates
the predominance of lithoclasts and the relatively low amounts of feldspars,
which range from 0.3 to 5.3%. Lithoclasts commonly include carbonate
extrabasinal clasts (21.7–75.3%), subdivided into dolomite (D), micritic
calcite (Cm) and sparry calcite (Cs), and silicate lithoclasts such as meta-
sedimentary clasts (Lsm, 0.7–22.0%) and serpentinite clasts (Lu, 0.0–
31.7%). The latter are an important characteristic of these successions in
terms of both variability and source-rock information. The occurrence of
serpentinite clasts is related to common chrome spinel in heavy-mineral
composition (von Eynatten et al. 1997). Other quartzose framework grains
are chert (Qc, 2.3–39.0%), polycrystalline quartz (Qp, 0.0–24.0%), and
monocrystalline quartz (Qm, 1.0–24.7%). Minor constituents are volcanic
lithoclasts, sedimentary intraclasts, mica, chlorite, glauconite, and heavy
minerals.

A better separation of formations based on light-mineral data compared
to the QmFLt-diagram is obtained by using ratios of various lithoclasts in
a logratio diagram (Fig. 5). Relative contributions of serpentinite (Lu),
metasedimentary lithoclasts (Lsm), and dolomite (D) suggest that both
source areas show considerable changes in the relative contribution of in-
dividual source rocks with time. For the southeastern source area the data
reflect on average decreasing Lu/Lsm ratios from the Rossfeld Formation
to the Lech Formation, suggesting a lower relative contribution of ultra-
basic source rocks to the younger Lech sandstones. For the northwestern
source area the data reflect on average increasing D/Qm and Lu/Lsm ratios
from the Losenstein Formation to the Branderfleck Formation, suggesting
a higher relative contribution of dolomite and ultrabasic source rocks to
the younger Branderfleck sandstones (Fig. 5; see also von Eynatten and
Gaupp 1999).

Using the chemical classification scheme of Herron (1988) the samples
are classified as litharenites, wackes, Fe-sandstones, and sublitharenites
(Fig. 6). Sandstones from the Branderfleck and Losenstein formations are
mostly litharenites and wackes, whereas sandstones from the Rossfeld and
Lech formations are mostly Fe-sandstones. This differentation is due to
higher Fe2O3/K2O ratios for sandstones from the latter two formations.
These higher ratios are due largely to lower K2O contents of these sand-
stones compared to sandstones from the Branderfleck and Losenstein for-
mations. Sandstones from the Rossfeld Formation also are characterized by
higher SiO2/Al2O3 ratios on average.
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FIG. 2.—Tectonosedimentary model of Valanginian to Coniacian sedimentation in the Northern Calcareous Alps (modified from von Eynatten and Gaupp 1999) illustrated
in three NW–SE oriented cross sections. For approximate position of cross sections see stippled line in the paleogeographic sketch of Figure 1B. Sandstones from Rossfeld and
Lech formations were derived from the southeastern source area, sandstones from Losenstein and Branderfleck formations were derived from the northwestern source area.

METHODS

Analytical Methods

In this section we give a brief description of the methods used for data
acquisition. For further information on the mineralogical data (details of
methodology and data tables), see von Eynatten and Gaupp (1999). Tables
of the chemical data are available in JSR’s digital archive (see Acknowl-
edgments). The measured variables obtained by each of the four methods
are listed in Table 1. The methods are ordered by decreasing analytical
expenditure, starting with heavy-mineral analysis and ending up with trace-
element XRF analysis.

Heavy-Mineral Data.—Sandstones were disaggregated using acetic acid
to remove carbonate cement. Heavy minerals were obtained from the 63–
125 mm sieve fraction of the disintegrated sand by gravity settling in tri-
bromoethane. At least 200 non-opaque non-micaceous minerals were counted
using the ribbon counting method (Mange and Maurer 1991; Morton and
Hallsworth 1994), except for four samples from which only 100 grains were
counted because of very high amounts of opaque heavy minerals.

Light-Mineral Data.—Light-mineral data were obtained by point count-
ing of at least 300 framework grains. Thin sections were stained with Aliz-
arin red S for distinguishing between calcite and dolomite. In contrast to
the Gazzi–Dickinson method, minerals . 63 mm within lithoclasts were
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FIG. 3.—Stratigraphic range of sandstones from the four sedimentary successions.

FIG. 4.—Sandstone light-mineral compositions illustrated in QmFLt diagrams. All
samples (n 5 52) are litharenites.

FIG. 5.—Logratios using specific lithoclasts and monocystalline quartz (Qm)
grains allow a better seperation of formations than QmFLt diagrams. D, dolomite;
Lu, serpentinite; Lsm, metasedimentary lithoclasts. Symbols are the same as used
in Figure 4.

counted as the type of lithoclast in which they occur (e.g., Decker and
Helmold 1985). Monomineralic grains and lithoclasts were distinguished
using the 0% cutoff proposed by Ingersoll et al. (1984).

Major-Element Data.—Sandstones were crushed to pieces , 4 mm
using a jaw crusher and then powdered using a corundum ball mill. Loss
on ignition (LOI) was determined by heating the dried samples up to 9508C
for two hours. Sample powder was then mixed (1:10) with a 2:1 mixture
of lithium tetraborate (Li2B4O7) and lithium metaborate (LiBO2) to prepare
fusion discs. Major-element data were determined on fusion discs by X-
ray fluorescence spectrometry with a Philips PW 2400 wavelength-disper-
sive spectrometer system using a Rh tube. Relative errors on major ele-
ments are usually less than 2%. For statistical calculations, major-element
oxides were recalculated to 100% with the LOI included. Total iron is
expressed as Fe2O3.

Trace-Element Data.—The data were obtained using the same analyt-
ical equipment as for major elements but trace elements were measured on
pressed powder pellets. Relative errors on trace elements are usually less
than 5%. Pressed powder pellets are much easier and faster to produce than
fusion discs, and therefore we treat trace-element analysis as an indepen-
dent method. This is because, if samples are already well discriminated by
trace elements, there is no need to analyze major elements for discrimi-
nation purposes.

Statistical Methods

In order to analyze the data obtained by the four different methods with
statistical rigor we follow the method suggested by Aitchison (1986). All
data sets are compositional data, which means that they are restricted to
values between 0 and 1 (or 100%) and are subjected to the constant-sum
constraint. This constraint means that all variables sum to a constant (e.g.,
100%) and, consequently, cannot vary independently from each other. This
implies that compositional raw data cannot follow a multivariate normal
distribution and therefore fail a major prerequisite of parametric statistical
methods, such as standard discriminant analysis. The method of Aitchison
(1986) is based fundamentally on the logratio transformation of the com-
positional data. This means, that a d-dimensional composition x 5 (x1, x2,
. . . , xd) is transformed to y 5 (ln(x1/xd), ln(x2/xd), . . . , ln(xd21/xd)). The
choice of the denominator (here: xd) of the logratio transformation is not
critical to the results (Aitchison 1986). This operation transforms the data
from their constrained sample space, the simplex Sd, into the real space
Rd21, where parametric statistical methods can be applied to the trans-
formed data (Aitchison 1986). For applying logratio transformations to the

data sets, zero values must be replaced by small positive values. In the
chemical data sets no zeros occur, but zero values are present in both
mineralogical (light and heavy minerals) point-count data sets. We applied
the method of replacement suggested by Martı́n-Fernández et al. (2000)
assuming that zero values are not essential zeros. As a reasonable input
value for zero replacement we choose 0.1%, which corresponds to 20–33%
of the lowest measurable value according to 200–300 point counts.

Biplot Analysis.—Biplots describe graphically the pattern of relative
variation of a multivariate data set by projection onto a plane fixed by
principal components. It is traditionally defined (Gabriel 1971) using the
first two principal components, but there is no need to restrict the diagram
to these two axes. For a detailed description of biplot techniques see Krza-
nowski (1988). Aitchison (1990, 1997) applied the biplot to compositional
data using the centered logratio transformation, i.e., the denominator of the
ratios is given by the geometric mean of each composition. This implies
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FIG. 6.—Chemical classification scheme of
sandstones based on major elements (Herron
1988). Symbols are the same as used in
Figure 4.

TABLE 1.—Measured variables

Method

Heavy
Mineral
Analysis

Light
Mineral
Analysis

Major
Element
Analysis

Trace
Element
Analysis

No. of variables 11 11 11 15

Variables chrome spinel (csp)
zircon (zr)
tourmaline (to)
rutile (rt)
garnet (gt)
chloritoid (cd)
blue amphibole (gl)
epidote minerals (ep)
green amphibole (ac)
apatite (ap)
others*

monocrystalline quartz (Qm)
polycrystalline quartz (Qp)
microcrystalline quartz, chert (Qc)
feldspar (F)
metasedimentary lithoclasts (Lsm)
ultrabasic clasts (serpentinite, Lu)
volcanic lithoclasts (Lv)
micritic calcite extraclasts (Cm)
sparitic calcite extraclasts (Cs)
dolmite extraclasts (D)
others**

SiO2
TiO2
Al2O3
Fe2O3 (t)
MnO
MgO
CaO
Na2O
K2O
P2O5
LOI

Ba
Co
Cr
Cu
Ga
Nb
Ni
Pb
Rb
Sc
Sr
V
Y
Zn
Zr

* Traces of brown amphibole, tremolite, pumpellyite, brookite/anatase, barite, and anhydrite.
** Traces of sedimentary intraclasts, bioclasts, mica, chlorite, glauconite, and heavy minerals.

that the origin of the biplot corresponds to the center (geometric mean) of
the whole data set. The axes of the biplot correspond to principal compo-
nents of the logcentered data (Fig. 7). A principal advantage of biplots is
that they represent both the samples and the variables of compositional
data. The former are termed cases, the latter vertices. For the interpretation
of a biplot it is important to note that:

(1) The squared distance between a vertex and the origin corresponds
to the variance of the logcentered variable. If the angle between the line
from a vertex to the origin and an axis is small, the variable has a strong
influence on the corresponding principal component. The larger the distance
of the vertex to the origin and the smaller the angle, the stronger the in-
fluence. For example, the logcentered variable Lu (serpentinite clasts) of
the light-mineral dataset (Fig. 7B) shows the highest relative variability of
all light-mineral variables and strongly determines the first principal com-
ponent. This is in contrast to most of the other variables, which have either
close to no influence at all or more influence on the second component
(Fig. 7B).

(2) The squared distance between two vertices corresponds to the vari-
ance of the logratios of these vertices (variables), which implies that nearly
coincident vertices means that the variance of the logratios of these vari-
ables is near zero and, thus, the ratio is almost constant. A good example

can be seen in both trace-element biplots (Fig. 7D) where the logcentered
variables Cr and Ni lie close together, implying that the ratio Cr/Ni is
relatively constant.

(3) The distance between two samples (cases) is a measure of the sim-
ilarity of the two samples and, thus, strong clustering of samples implies
that these samples show strong similarities in composition.

It must be stressed that biplots serve as a descriptive tool for a first
evaluation of the data. All statements based on biplots should be regarded
as hints for further quantitative examinations but not as a final result. This
is because only a portion of the total variability is explained by the two-
dimensional projection. The proportion of the variability explained can be
taken as a measure of the strength of an individual biplot in interpreting
the data. Obviously, if the proportion is exactly or near to 100%, results
obtained by graphical biplot interpretation are very robust.

Discriminant Analysis.—We performed the linear discriminant analysis
using standard software routines (MINITAB, SPSS) applied to the additive
logratio transformed data. For principles of multivariate discriminant func-
tion analysis the reader is referred to, e.g., Krzanowski (1988). The choice
of the denominator of the logratio transformation is not critical to the results
(see above). Choosing a denominator that is assumed to be valuable for
discrimination may be helpful if a later reduction of the variables necessary
for discrimination is intended. For linear discriminant analysis we have to
assume that the transformed data of individual classes are samples of mul-
tivariate normal distributions with the same covariance matrix.

In the general procedure, the best linear discriminant functions between
the classes (e.g., the four formations) were calculated for each of the four
methods using all of the available samples. Then each individual sample
was classified according to the discriminant functions and a rate of well-
classified samples was calculated for each class (formation) and each meth-
od. In a second step, the procedure was repeated for each individual sample
with linear discriminant functions calculated using all of the samples minus
this individual one. The latter technique is known as cross-validation and
satisfies the condition that the data to be classified should not be used for
the formulation of the classification rules. To provide additional informa-
tion on differences in composition between the four classes (formations),
we use the Mahalanobis distance. Given that the Mahalanobis distance
includes all of the variability of the sample classes, it can be used as a
measure of the separation of classes (Krzanowski 1988). Because the meth-
od that discriminates best among all of the four formations is not neces-
sarily the one that discriminates best between any two formations, we also
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FIG. 7.—Biplots of compositions obtained by the four methods. A) heavy-mineral data, B) light-mineral data, C) major-element data, D) trace-element data. Axes are
first and second (left side) and first and third (right side) principal components; first principal component as horizontal axis in both cases. Percentages indicate proportions
of total variability explained by an individual biplot. Bold percentages indicate proportions of total variability explained by both of the biplots. Symbols are the same as
used in Table 1 (variables) and Figure 4 (formations).

have applied hierarchic discriminant analysis. This means that we separate
first one formation from all the others, then a second one from the rest,
and finally the two remaining formations from each other.

All variables of each analytical method (see Table 1) are used for the
discriminant function analysis except for others (light-mineral and heavy-
mineral data sets), LOI (major-element data set), and Cs (light-mineral data
set). The former comprise the sum of mostly rare and poorly constrained
variables. LOI is strongly related to CaO (see also Figure 7C: coincidence
of CaO and LOI) for mineralogical reasons because high carbonate contents
(calcite, dolomite) imply both high CaO and high CO2 (resulting in high
LOI) contents. The latter (Cs, sparitic calcite) was not used because it may
be biased by diagenetic processes: differentiation between sparitic calcite
grains and calcite cements is sometimes ambiguous in diagenetically altered
sandstones.

RESULTS

Descriptive Statistics: Biplot Analysis

Biplots of the data obtained by the four methods are shown in Figure 7.
For each method we choose two biplots (defined by the first and second
and by the first and third principal components). Together these three com-
ponents explain between 68% and 81% of the total variability.

The heavy mineral data show several mineral phases with comparably
high relative variability spread in all directions of the biplot (Fig. 7A). A
similar pattern is observed for the major-element data (Fig. 7C). Here, the
small distance between the CaO and LOI vertices in both major-element
analysis biplots indicate that the ratio CaO/LOI is relatively constant, which
results from the high carbonate content (CE clasts) of the sandstones (von
Eynatten and Gaupp 1999). The variability pattern of the light-mineral data
(Fig. 7B) is quite different, because one variable (Lu) shows a much higher
relative variability than all the other variables. This variable also has a
strong influence on the first principal component, followed by Qp, whereas
the other variables have either a small relative variability in general (e.g.,
Qs, Lsm, Cs, Qm, F) or a stronger influence on the second principal com-
ponent (e.g., Cm, D, Lv). A similar pattern is observed for the trace-element
data (Fig. 7D), where two variables (Cr, Ni) have a much higher relative
variability than do the others and these two variables also influence strongly
the first principal component. The distance Cr–Ni is very small in both
trace-element biplots, indicating that their ratio is relatively constant.

The similarity of light-mineral and trace-element biplot patterns is related
to the nearly exclusive occurrence of Cr and Ni in serpentinite lithoclasts
(Lu): a high relative variability of Lu in the light-mineral data set forces a
high relative variability of Cr and Ni in the trace-element data set. This
cannot be seen in the major-element data because the specific major-ele-
ment component of serpentinite is Mg, which is obscured because of its
concurrent occurrence in volcanic (Lv) and dolomite lithoclasts (D). It also
is not seen in the heavy-mineral analysis biplot, although nearly all of the
trace-element Cr should be derived from the heavy mineral chrome spinel
(csp). The reason may be that the trace-element data were derived from
the whole rock, whereas the heavy-mineral analysis data consider only a
specific part of the whole-rock mineralogy, i.e., heavy minerals in sand size
fraction (here: 63–125 mm). Thus, the greater part of Cr is probably derived
from microcrystalline chrome spinel within serpentinite lithoclasts (Lu),
which cannot be recognized by heavy-mineral analysis.

With regard to discrimination, the biplots demonstrate that there are clus-
ters of samples belonging to a given formation, e.g., Lech Formation sam-

ples in the heavy-mineral biplot (Fig. 7A, principal components 1 and 2)
or Branderfleck Formation samples in the major-element biplot (Fig. 7C,
principal components 1 and 3). At first glance, separation of formations
seems to work best in the heavy-mineral biplot (Fig. 7A, principal com-
ponents 1 and 2), but only 56% of the total variability is explained within
this diagram. The separation is not convincing on the heavy mineral biplot
of principal components 1 and 3. In general, the data show distinct differ-
ences in compositions with respect to the four formations, but a discrimi-
nation of all of them seems to be questionable. Such a full discrimination
can be tested by applying discriminant analysis.

Statistical Inference: Discriminant Analysis

The results of linear discriminant analysis are expressed as percentages
of well classified samples both without (DA) and with cross-validation
(DAX). Additional information comes from the squared Mahalanobis dis-
tance (MD2), a measure of separation of different groups (Table 2). If MD2

. 9 and DAX . 80%, the specific discrimination is considered to satisfy
the conditions of sufficient discrimination. These limits were chosen be-
cause (1) values of MD2 . 9 correspond to a . 3 sigma distance between
the means of two groups in the univariate case and is thus considered to
indicate a reasonable separation of groups, and (2) values of well classified
samples which exceed 80% are generally considered to be acceptable (e.g.,
Herron 1988) and correspond to values obtained by classical methods of
provenance determination (Molinaroli et al. 1991).

None of the analytical methods allow a perfect discrimination of all of
the four formations. Using standard linear discriminant analysis (DA) all
methods fulfill the 80% criterion, except for heavy-mineral analysis, which
fails this criterion for Branderfleck Formation samples (78%). Using cross
validation (DAX), both of the mineralogical methods (light-mineral and
heavy-mineral analysis) fail the 80% criterion for two out of four forma-
tions, whereas both of the chemical methods (major-element and trace-
element analysis) fail this criterion for one formation. DAX values are
lowest using light-mineral data (50% and 39%), and this method also dis-
plays some very low MD2 values. On the basis of the latter, light-mineral
data demonstrate a very poor separation between the Lech and Losenstein
formations (MD2 5 2) as well as between the Lech and Branderfleck
formations (MD2 5 5, Table 2). The other three analytical methods all
display sufficiently high MD2 values to separate between the four forma-
tions. Summarizing the simultaneous discrimination of all formations, we
can state that (1) the discriminative power of chemical methods is better
than that of mineralogical methods, and (2) heavy-mineral analysis dis-
criminates better than light-mineral analysis.

Because hierarchic discriminant analysis may lead to a better discrimi-
nation of classes, this procedure is also applied. To avoid the confusion of
demonstrating all possible steps, we only present all possible first (discrim-
ination of one formation from the other formations) and last steps (discrim-
ination between two formations). The parameters of the resulting ten dis-
criminant analyses for each of the methods are given in Table 2 and are
illustrated in Figure 8. DA values mostly exceed 90% regardless of the
method. Using the more critical parameters DAX and MD2 the worst results
are again given by light-mineral analysis, with 6 out of 10 analyses not
satisfying the criteria of sufficient discrimination. Again both chemical
methods are quite similar (3 out of 10 analyses fail), but using hierarchic
discriminant analysis heavy-mineral analysis gives the best discrimination
(1 out of 10 analyses fails).
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TABLE 2.—Summary of discriminant analysis

METHOD
No. of Variables (logratios)

Heavy Minerals
9

Light Minerals
8

Major Elements
9

Trace Elements
14

linear discriminant analysis
of all formations n DA DAX DA DAX DA DAX DA DAX

Branderfleck Formation (BF)
Losenstein Formation (LoF)
Lech Formation (LeF)
Rossfeld Formation (RF)

27
6

13
6

78
100
100
100

63
100

85
50

89
83
92

100

89
50
39
83

85
83
92

100

81
83
85
67

92
83
92

100

89
83
69
83

Mahalanobis distance (MD2):

BF-LoF
BF-LeF LoF-LeF
BF-RF LoF-RF LeF-RF

13
10
14

26
37 13

9
5

24
2

25 19

14
25
12

25
21 13

16
16
41

32
71 16

hierarchic linear discriminant
analysis n DA MD2 DAX DA MD2 DAX DA MD2 DAX DA MD2 DAX

one from the others:

BF–others
LoF–others
LeF–others
RF–others

52 (27125)
52 (6146)
52 (13139)
52 (6146)

83
92
94
94

4
14
9

11

75
92
83
85

96
85
81

100

6
4
2

21

90
75
71
94

94
94
96
88

10
13
16

7

88
94
94
88

96
96
88
96

11
20

7
17

84
94
75
92

pairwise:

BF–LoF
BF–LeF
BF–RF
LoF–LeF
LoF–RF*
LeF–RF

33 (2716)
40 (27113)
33 (2716)
19 (6113)
12 (616)
19 (1316)

97
90
97

100
100
100

14
10
11
70

455
40

88
83
82
90

100
90

97
95

100
90

100
100

11
6

20
7

37
42

91
83
97
68
67
95

97
100
94

100
100
100

34
29
11
32
82
13

97
92
81
84
75
69

100
100
100
100
100
100

33
21
57
43

272
42

88
82
91
69

100
63

linear discriminant analysis

NW-source from SE-source 55 (33119) 92 9 89 83 3 75 96 14 92 98 18 88

DA 5 percentage of well classified samples using standard linear discriminant analysis.
DAX 5 percentage of well classified samples using linear discriminant analysis with cross validation.
MD2 5 squared Mahalanobis distance.
RF 5 Rossfeld formation; LeF 5 Lech formation, LoF 5 Losenstein formation, BF 5 Branderfleck formation.
Bold numbers indicate either MD , 9 or DA , 80% or DAX , 80%.
* Numbers of variables were decreased to eight for computational reasons (HMA without ln(ap/zr), MEA without ln(Na2O/Si2O), TEA without ln(Co/Zr), ln(Ni/Zr), ln(Nb/Zr), ln(Pb/Zr), ln(Sc/Zr), ln(Zn/Zr)).

The last calculations consider the discrimination between the two dif-
ferent source areas, which, in fact, means the discrimination of Branderfleck
and Losenstein formations from Lech and Rossfeld formations (Table 2,
Fig. 8). Using light-mineral data both parameters (MD2 5 3, DAX 5 75%)
fail the criteria for sufficient discrimination, whereas using heavy-mineral,
major-element, and trace-element data discrimination between source areas
passes these criteria. The weak separation (MD2 5 3) depends strongly on
the very poor separation between Losenstein and Lech formations, because
this separation is crucial for the separation of the two source areas (von
Eynatten and Gaupp 1999).

In summary, the discrimination of formations and source areas on the
basis of heavy-mineral, major-element, and trace-element analysis mostly
passes the criteria of sufficient discrimination as defined above, whereas
discrimination based on light-mineral analysis mostly fails these criteria.
The former three methods display no systematic differences with respect
to both discrimination parameters. These results suggest that trace-element
analysis exhibits the best relationship of low analytical expenditure and
high discriminative power with respect to the analyzed case study.

DISCUSSION

The most frequently used method to determine sandstone composition
is thin-section petrography (light-mineral analysis). This is partly because
several decades ago, when sedimentary petrology became a growing sub-
discipline of geology (e.g., Pettijohn 1957), thin-section preparation and
microscopy were accessible techniques for most geologists. However, light-
mineral analysis still has strong advantages compared to chemical methods,
because (1) analyzing the complete framework of a sandstone allows for
the distinction between detrital and diagenetic phases, and (2) light-mineral
analysis allows for the differentiation of textures of individual grains even
if they are chemically and/or mineralogically similar. In fact, light-mineral
analysis is capable of contributing to several specific problems in sedi-

mentary petrology and provenance analysis that cannot be solved by other
methods, e.g., petrologic studies of sandstone diagenesis (e.g., Gaupp 1996)
or the use of very detailed classifications of unaltered lithic grains or quartz
fabrics to evaluate unroofing histories in the source areas (e.g., Dorsey
1988).

On the other hand, light-mineral analysis also has several disadvantages.
Concerning analytical expenditure, point-counting methods are quite time-
consuming compared to modern XRF techniques, which allow rapid ac-
quisition of large numbers of precise chemical analyses (Rollinson 1993).
There are relatively high methodical errors (counting statistics) in the quan-
tification of individual variables (van der Plas and Tobi 1965) superim-
posed on possible operator bias due, in part, to subjective criteria for the
separation of individual grain types (Dickinson 1970; Wolf 1971; Ingersoll
et al. 1985; Suttner and Basu 1985). Despite these errors in quantification,
light-mineral analysis and the models of classification or provenance de-
termination relying on it (e.g., QFL and QmFLt diagrams of Dickinson
1985) often are used uncritically (Ingersoll 1990).

A further pitfall of light-mineral analysis is the physical or chemical
decomposition of relatively unstable grains in the course of diagenesis (e.g.,
Milliken 1988). Those grains carrying most information on provenance
(feldspars and lithoclasts) are most prone to be degraded. This process
generates fine-grained material mostly composed of clay minerals (pseu-
domatrix), which can no longer be identified by optical means. For a review
of problems involved with such ‘‘pseudomatrix’’ we refer to Cox and Lowe
(1996) and we use the term in their sense. Modifying the method by a
combined microscopic-EDX approach (Bangs Rooney and Basu 1994) al-
lows the determination of certain precursor minerals (or mineral aggre-
gates) of the pseudomatrix but enhances the analytical expenditure and
cannot be considered a purely petrographic method.

Some disadvantages involved with light-mineral analysis commonly are
thought to be circumvented by chemical analyses, especially when studying
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FIG. 8.—Squared Mahalanobis distance (MD2)
vs. percentage of well classified samples with
cross validation (DAX) for the ten hierarchic
discriminations (see Table 2) of each method.
Gray area indicates insufficient discriminations
with MD2 , 9 and/or DAX , 80%. Large
symbols represent data from the discrimination
between the two source areas (NW source vs.
SE source).

muddy sandstones or altered arkoses and litharenites with high amounts of
pseudomatrix (‘‘graywackes,’’ e.g., Bhatia and Crook 1986; McLennan et
al. 1993). But quantitative approaches comparing the results of both chem-
ical and mineralogical methods applied to the same suite of samples are
very rare.

In a multi-method study of modern sediments of the Calabrian arc, Ib-
beken and Schleyer (1991) statistically tested the discriminative power of
different methods and grain sizes with respect to the separation of source
areas. Considering the sand size fraction, heavy-mineral analysis discrim-
inated best, major-element analysis intermediate, and light-mineral analysis
worst. Molinaroli et al. (1991) applied discriminant analysis to mineral-
ogical and chemical methods of provenance determination using case stud-
ies from the literature. They find similar results for the individual data sets
ranging from 74% to 85% (on average) of well classified samples, but this
is not truly a comparative study in that different methods were applied to
the same samples. Molinaroli et al. (1991) observed low percentages of
well classified samples (55–73%) for the magmatic-arc subprovinces of the
light-mineral QFL and QmFLt provenance diagrams of Dickinson (1985).
This observation is in agreement with the statement of Butler and Woronow
(1986) that the subdivision of the magmatic-arc province may well be an
artifact of the constant-sum constraint of compositional data.

Our study suggests that the discriminative power of light-mineral anal-
ysis is significantly lower than the other three applied methods, particularly
when evaluating samples of a single sandstone class (e.g., litharenites).
Taking into account the analytical expenditure for data acquisition, trace-
element analysis appears to be the most efficient method for the discrimi-
nation of the analyzed sandstones. Although the results are based on only
a single case study, we propose a more general applicability of this con-
clusion for the following reasons:

(1) The analyzed sandstones are immature litharenites with a high pro-
portion of lithoclasts. Although affected by a considerable tectonic and
thermal overprint, lithoclasts still show a wide range of distinguishable
types (e.g., serpentinite, quartz–chlorite–mica aggregates, volcanics, chert,
dolomite, micritic calcite). This high diversity of lithoclasts is due to a
complex hinterland (von Eynatten and Gaupp 1999). Therefore, these sand-
stones should have a high potential for a good discrimination by light-

mineral analysis compared to more mature sandstones like sublitharenites
or quartzarenites. Nevertheless light-mineral analysis mostly fails statistical
criteria for sufficient discrimination.

(2) Our results are supported by a previous study of modern sediments
of the Calabrian arc by Ibekken and Schleyer (1991) that was based on a
much larger number of samples. The clasts of these immature sediments
are not modified by diagenetic processes, implying that all the information
obtainable by light-mineral analysis is available for discrimination. Nev-
ertheless, light-mineral analysis exhibits again the weakest discriminative
power of all applied methods, including heavy-mineral analysis and major-
element analysis.

(3) The larger the number of variables and the better these variables are
defined, the better a multivariate discriminant analysis can be. Light-min-
eral analysis of diagenetically altered litharenites is quite limited in the
number of precisely distinguishable variables and generally displays rela-
tively high errors on individual variables. In contrast to counting methods,
chemical analysis (e.g., XRF analysis of major and trace elements) usually
displays much lower errors on individual variables, and in case of trace-
element analysis the number of variables may be markedly larger.

The latter point is considered to be valid for sandstones affected by a
noticeable diagenetic overprint, but in case of unconsolidated sands or
sandstones with low diagenetic imprint the number of variables obtainable
by light-mineral analysis may be markedly larger than the number of var-
iables obtainable by trace-element analysis. The results from this study
cannot be generally extended to all kinds of sands and sandstones, but the
type of sandstones considered here are very common (e.g., foreland basins)
and form about 50% of all sands and sandstones (litharenites and gray-
wackes; Pettijohn et al. 1987).

As mentioned above, chemical whole-rock analysis does not provide
information on texture and authigenesis of sandstones. For example, quartz-
arenites composed exclusively of varying contents of quartz and pure chert
grains will probably not be discriminated succesfully by chemical methods.
In some cases, diagenetic mineral phases may be the only cause for con-
trasting chemical compositions and, hence, their occurrence may cause dis-
crimination of sandstones based on whole-rock geochemistry without any
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relation to sandstone provenance. However, these effects can be easily de-
tected by qualitative petrography without using point-count techniques.

The method with the greatest discriminative power is thought to discrim-
inate best between groups of samples with different compositions. Because
sandstone composition is controlled by geologic conditions such as source
rocks, climate, and diagenesis, changes in composition reflect changes in
one or more of these conditions. Consequently, a significant change in
geologic conditions should be recorded in the sandstones, and the most
prominent way to evaluate such changes is to look for statistically signif-
icant changes in sandstone composition. The higher the discriminative pow-
er of the chosen method to analyze sandstone composition, the higher is
the chance to dectect such statistically significant changes. Obviously, the
method with the higher discriminative power does not necessarily contrib-
ute most to the interpretation of geologic conditions like, e.g., provenance.
But (1) evaluating the potential for significant differences in sandstone
composition should be among the first steps when trying to understand the
geologic history of a suite of sandstones, and (2) use of statistical tools
such as biplots of logratio-transformed compositional data gives useful
hints to the further interpretation of the data (e.g., the high variability of
Cr and Ni and their strong influence on the first principal component, Fig.
7D).

The provenance model for the sandstones of this case study is based
mainly on heavy-mineral analysis and single grain geochemistry of several
detrital mineral phases (von Eynatten and Gaupp 1999). It would definitely
not have been possible to establish the model solely on the basis of whole-
rock chemical analyses. This is in agreement with recent developments
favoring multi-method approaches to sandstone provenance (e.g., Haughton
et al. 1991; Morton and Hallsworth 1999; von Eynatten et al. 1999). Once
a provenance model is established and appropriate discriminant functions
between contrasting sources are calculated, chemical analysis of an un-
known sample should allow us to assign this sample to its source. From
our results, a high probability of correct classification combined with lowest
analytical expenditure is achieved by using XRF trace-element analysis on
pressed powder pellets.

CONCLUSIONS

Four different analytical methods were applied to a suite of diageneti-
cally altered Cretaceous litharenites to evaluate the discriminative power
of each method with respect to different formations and source areas. The
results imply that light-mineral analysis has the lowest discriminative pow-
er of the applied methods. Trace-element analysis on pressed powder pellets
provides a high discriminative power combined with the lowest analytical
expenditure.

On the basis of comparison with other studies, these results are inter-
preted to have a more general meaning with respect to the discrimination
of sandstones based on composition. We are aware, however, that this is
not proven to be valid for all kinds of sandstones. In the case of less mature
and diagenetically altered sandstones (e.g., litharenites and graywackes)
chemical analysis appears to be more precise and efficient with respect to
discrimination purposes.

Sandstone composition is strongly related to the provenance of sediment,
which is largely controlled by source rocks, climate, and relief (e.g., Johns-
son 1993). Because of a complex interaction of these factors, data based
on a single analytical method mostly do not allow us to develop a precise
provenance model. But if a provenance model already exists and discrim-
inant functions are calculated for the sample suite the model relies on, trace-
element analysis provides a fast and promising tool to assign an unknown
sample to its appropriate source. If no such model exists, chemical analysis
provides a quick tool for a first estimate of the discriminative potential of
a sample suite.

Finally, we wish to emphasize that applying rigorous statistical methods
to compositional data may enhance the strength of conclusions that are

based on data of this kind. The logratio approach of Aitchison (1986)
provides a powerful tool for analyzing compositional data, and we therefore
encourage its use whenever sandstone compositions are analyzed statisti-
cally.
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MARTı́N-FERNÁNDEZ, J.A., BARCELÓ-VIDAL, C., AND PAWLOWSKY-GLAHN, V., 2000, Zero replace-

ment in compositional data sets, in Kiers, H.A.L., Rasson, J.-P., Groenen, P.J.F., and Schad-
er, M., Advances in Data Science and Classification, Proceedings of the 7th Conference of
the International Federation of Classification, IFCS 2000, Namur: Berlin, Springer, p. 155–
160.

MCBRIDE, E.F., 1963, A classification of common sandstones: Journal of Sedimentary Petrol-
ogy, v. 33, p. 664–669.

MCLENNAN, S.M., HEMMING, S., MCDANIEL, D.K., AND HANSON, G.N., 1993, Geochemical ap-
proaches to sedimentation, provenance, and tectonics, in Johnsson, M.J., and Basu, A.,
Processes Controlling the Composition of Clastic Sediments: Geological Society of America,
Special Paper 284, p. 21–40.

MILLIKEN, K.L., 1988, Loss of provenance information through subsurface diagenesis in Plio–
Pleistocene sandstones, northern Gulf of Mexico: Journal of Sedimentary Petrology, v. 58,
p. 992–1002.

MOLINAROLI, E., BLOM, M., AND BASU, A., 1991, Methods of provenance determination tested
with discriminant function analysis: Journal of Sedimentary Petrology, v. 61, p. 900–908.

MORTON, A.C., 1985, Heavy minerals in provenance studies, in Zuffa, G.G., Provenance of
Arenites: Dordrecht, The Netherlands, Reidel, p. 249–277.

MORTON, A.C., AND HALLSWORTH, C., 1994, Identifying provenance-specific features of detrital
heavy mineral assemblages in sandstones: Sedimentary Geology, v. 90, p. 241–256.

MORTON, A.C., AND HALLSWORTH, C.R., 1999, Processes controlling the composition of heavy
mineral assemblages in sandstones: Sedimentary Geology, v. 124, p. 3–29.

ORI, G.G., AND FRIEND, P.F., 1984, Sedimentary basins formed and carried piggyback on active
thrust sheets: Geology, v. 12, p. 475–478.

PETTIJOHN, F.J., 1957, Sedimentary Rocks: 2nd edition, New York, Harper & Brothers, 718 p.
PETTIJOHN, F.J., POTTER, P.E., AND SIEVER, R., 1987, Sand and Sandstone, 2nd edition: New

York, Springer, 553 p.
POTTER, P.E., 1978, Petrology and chemistry of modern big river sands: Journal of Geology,

v. 86, p. 423–449.
ROLLINSON, H., 1992, Another look at the constant sum problem in geochemistry: Mineralogical

Magazine, v. 56, p. 469–475.
ROLLINSON, H., 1993, Using Geochemical Data: Essex, Longman, 352 p.
SUTTNER, L.J., AND BASU, A., 1985, The effect of grain size on detrital modes: a test of the

Gazzi–Dickinson point-counting method—Discussion: Journal of Sedimentary Petrology, v.
55, p. 616–617.

SUTTNER, L.J., BASU, A., AND MACK, G.H., 1981, Climate and the origin of quartz arenites:
Journal of Sedimentary Petrology, v. 51, p. 1235–1246.

VAN DE KAMP, P.C., AND LEAKE, B.E., 1995, Petrology and geochemistry of siliciclastic rocks
of mixed feldspathic and ophiolitic provenance in the Northern Apennines, Italy: Chemical
Geology, v. 122, p. 1–20.

VAN DER PLAS, L., AND TOBI, A.C., 1965, A chart for judging the reliability of point counting
results: American Journal of Science, v. 263, p. 87–90.

VON EYNATTEN, H., 1996, Provenanzanalyse kretazischer Siliziklastika aus den Nördlichen Kal-
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