

HvE - Sedimentpetrologie

FIGURE 4.18 Surface features of sand grains, seen on enlarged pictures taken with a scanning electron microscope, aid in differentiating among transporting agencies. (a) Surface of a quartz grain (0.1-mm diameter) that has been crushed and abraded during transport at the bed of a Swiss glacier displays distinctive concoidal fractures. (b) Surface of a wind-transported quartz grain (0.5mm diameter) from south-central Libya has a distinctive pitted appearance caused by mechanical chipping as grains impact one another during strong sandstorms.

Skinner & Porter 1989

Fig. 2.3 Formulae for the method of moments for grain-size analyses, f is the percentage fraction in each class interval of the total weight of sediment (if a sieve analysis) or of the total number of grains (if data from a thin section), and $m\phi$ is the mid-point value of each class interval in phi units

Mean (first moment) = $\overline{x} = (f_1 m \phi_1 + f_2 m \phi_2 \dots + f_n m \phi_n)/100$, i.e. $\frac{\Sigma f m \phi_1}{100}$ Standard deviation (second moment) = σ

100

$$= \sqrt{\frac{f_1(m\phi_1 - \bar{x})^2 + f_2(m\phi_2 - \bar{x})^2 \dots + f_n(m\phi_n - \bar{x})^2}{100}},$$

i.e. $\sqrt{\frac{\Sigma f(m\phi - \bar{x})^2}{100}}$
Moment coefficient of skewness $= \alpha_3 = \frac{\Sigma f(m\phi - \bar{x})^3}{100\sigma^3}$
Mean-cubed deviation $= \alpha_3\sigma^3 = \frac{\Sigma f(m\phi - \bar{x})^3}{100\sigma^3}$
Tucker 1991
S.14

Tucker 1991 p.13/14

Fig. 2.3 Random section through spherical grains of equal size, showing the apparent diffrent grain sizes present. The view has an apparent sorting of 0.58 (i.e. moderately well sorted) whereas the true sorting value is 0 (i.e. very well sorted). Reproduced from Harrell (1984) with permission of the Society of Economic Paleontologists and Mineralogists.

S.14

HvE - Sedimentpetrologie

Sorting:

< 0.35

0.35 - 0.5

0.5 - 1.0

1.0 - 2.0

> 2.0

(σ = standard deviation)

very good

moderate

very poor

good

poor

(a)(b) $\sigma = 0.35$ $\sigma = 0.5$ (d) $\sigma = 1.0$ $\sigma = 2.0$ (c)Fig. 2.4 Visual comparators for random sections through log-normally distributed sets

Tucker 1991 p.13/14

of spherical grains. Actual sorting in (a) is 0.35, in (b) 0.5, in (c) 1.00 and in (d) 2.00. Apparent sorting is 0.69, 0.77, 1.16 and 2.08 respectively. Note that the disparity is greater for very well sorted grains (a), than for the less well sorted (c and d). Reproduced from Harrell (1984) with permission of the Society of Economic Paleontologists and Mineralogists.

HvE - Sedimentpetrologie

zu 4) Grain fabric

HvE - Sedimentpetrologie

Fig. 5.19 Solution compaction between individual grains (porosity is stippled throughout): (a) Point grain to grain contacts (arrowed). (b) Stressed grain to grain cntacts (large arrows), leading to formation of dislocations in crystal lattice and subsequent dissolution, with lateral fluid transport of solutes (small arrows).

(c) Planar grain to grain contacts.(d) Interpenetrating grain to grain contacts.

(e) Sutural grain to grain contacts.

terminology: quartz (white), mica (lined) and matrix (stippled).

(C) Classification (nomenclature)

Tab. 3.1: Absoluter Fehler in % in Abhängigkeit von der Anzahl der ausgezählten Körner n und der Häufigkeit eines Korntyps p. Berechnet nach $s = \sqrt{[p(100-p)/n]}$ (VAN DER PLAS & TOBI 1965). Der angegebene Fehler beträgt 2s (95%ige Wahrscheinlichkeit).

n	100	200	300	600
р				
5%	4.4	3.1	2.5	1.8
10%	6.0	4.2	3.5	2.5
20%	8.0	5.7	4.6	3.3
40%	9.8	6.9	5.7	4.0

Abb. 3.3:

Verhältnis der Standardabweichung (2s) zur Häufigkeit eines Korntyps in % (p). Kurve und schwarze Kreissignaturen zeigen die theoretischen Werte aus Tab. 3.1 für n = 300. Vierecke zeigen die ermittelten Standardabweichungen aus Tab. 3.2.

von Eynatten 1996 S.28f.

Tab. 3.2: Mittelwert m und mittlerer Fehler 2s (in Klammern, Standardabweichung einer Stichprobe, 95% igeWahrscheinlichkeit) der häufigsten Korntypen von drei Sandsteinproben (n = 5). Die Standardabweichung wurde berechnet nach $s = \sqrt{[\sum(x-m)^2/(n-1)]}$ (GRÄNICHER 1994: S.3-10).

Probe	Qm	Qp	Qc	L _m '	Cm	Cs	D
H 1021-5	19.2	13.2	5.5	13.8	9.9	20.1	6.2
	(4.4)	(3.9)	(2.5)	(3.2)	(3.7)	(5.2)	(2.8)
EY 4-3	5.1	3.6	5.2	4.3	33.2	32.2	8.6
	(2.1)	(3.4)	(2.4)	(2.5)	(6.1)	(4.0)	(3.9)
EY 9-31	2.8	2.9	2.7	8.2	33.6	26.4	12.1
	(2.5)	(2.2)	(0.9)	(2.4)	(4.7)	(5.2)	(3.8)

HvE - Sedimentpetrologie

Fig. 1 Major tectonic elements of South America and adjacent ocean basins.

Fig. 2 Plate tectonic classification of sandstone mineralogy (after ref. 6, Fig. 1). Numbers in the small triangles indicate: 1, average composition of passive margin sands from the Rio de Plata to Trinidad; 2, beach sands from Trinidad westward along the Caribbean coast; 3, Argentine beach sands; and 4, the sands of South America's Pacific coast (see Fig. 3).

U. Triassie		zzzz zzzz pale grey	Sierra Espuña	AGE	LITHOLOGY		Thickness
M. Iriassi	c	dolomite	Malaguide Complex	Langhian		grey/green pelagic marl &	. James
		yellowish	ist.	Aquitanian	the second second	sst., cong.	1.0.1
Damas		Wyy crossbeddir		U.Oligocene		red pelagic marl,	?
Permo-		blue phyll	es	1.000		sandstone,	>500m
inassie :		variegated				congromerate	
	0 0	o o o quartzite		Oligocene		conglomerate,	400-
		- dark coloure				limestone	1000m
alaeozoic	2	quarzites,		1.1.1.1.1	20000		
		phyllites,			-		-
		graphite sc	ists		0		
				Eocene		Nummulitic	
METAMORP	HIC MINER	ALS:			0	limestone	700-900m
hlorite, biotite,	epidote, clino	zoisite, chloritoid, cordi	rite, Alpujarride		- 00 -	marl	
ndalusite, kyar are sillimanite	ite, staurolite, (only in S. Alm	bl/gr amphibole, garne enara & S. Cabrera), carr	Complex		0-0-	indit	
						limost arrows	100m
M -II		marbles	Nevado-Filabrido	Cretaceous		innest., greensand	max.(P)
Triassic		Mesozoic matic intrus					
		mateclasti	Complex	MU.		oolitic	400m
		marbles & cal	silic (central Betic	Jurassic		limestone	
	TT	graphitic sc	ists Cordillera)				
	~260~~~~	amphibolite					_
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	& gneisses		Lias	2777777	dolomite	100m
	1 <u>1</u>	y y local gypsu	n			avosum & marl	200m??
Triassic?		quartzite,		-		gypson a man	(M)
		• • • • micaschist		Telessie		grey/black	150-200m
		dark garnet	10 m	Triassic	1111111	dolomite	(M)
Palaeozoic	222222	graphitic sc	ists	1 Parts and	******		100m (P)
	222222	++ Permian gra	hite	Permo-			
ITTIMOOD		110		Triassic		red beds	c.250m (M
METAMORP	HIC MINER	ALS:		and an expecting ( at low	00000		1.15
clinozoisite, chi	oritoid, kyanit	e, staurolite, bl/gr amp	bole.	Detrosovia	rese	greywackes	
garnet, actinoli	e			Palaeozoic	Base not seen	shale	
A	GE	LITHO	ACIES	FAC	IES	ne tational since	ang - 20
	nghian	BERNABELES FM					•
O Bur	ligalian	Grey turbidites		~	Turbiditos Basi	n sediments	
Σ	19,22,8 (9)	Planktonic faunas			Turbiones Busi		di se 🖉 de
Aqu	itanian				1		
		AMALAYA FM		1	1	2	1.1.1
						1/	
		Coloured turbidites				V	
ш		Planktonic faunas					0
N.	1.1						2 8
S	1.1.1.1						i i
8	H						fon
E	2.000	Bioclastic Ist,		Coralli	ne algae		hro
0		acarenites and ma		ALL	SI	ope	Z
Selling seen	67.96				the second	-A	la
1 June -		Coralgal Com	I I I		Later States	-1	E G
		lst.	Beef	Fan cong			ase
		Dicocyclinidae					
	nor li	Small nummulites.					III a
U	pher 1	alaaa					0



Fig. 4. Facies summary of the Espuña foreland basin, illustrating a generally deepening sequence through time.

NE

INTERN TINET

TAT

SW

Limestones and marl

Nummulites

Assilina

Algae

Lst. with Alveolina Quartz granules

EOCENE

Middle

Lower



Fig. 6. Subsidence analysis for a maximum and minimum thickness of the Espuña Malaguide section: (A) Circles, uncorrected subsidence; triangles, decompacted subsidence. (B) Vertical bars, water-loaded or tectonic subsidence including uncertainty in palaeowater depth. The effect of sediment loading has been removed by replacing the sediment with water and assuming Airy isostasy. Dotted lines are best-fitting maximum and minimum theoretical subsidence curves for a rift basin with finite duration stretching with uniform strain rates, and an initial crustal thickness of 30 km. Vertical dashed line indicates significant departure of observed subsidence from the theoretical rift model. At the start of the Tertiary (65–50 Ma) there is a rapid increase in subsidence due to the onset of foreland basin development.

#### HvE - Sedimentpetrologie







Malaguide Complex, whereas first-cycle metamorphic minerals were derived from the Alpujarride and Nevado-Filabride Complexes. (B) Summary plots illustrating the main trends of heavy mineral composition in the upper Oligocene and Miocene stratigraphic section. Plot (a) illustrates the Internal Zone unroofing history with reworked stable minerals eroded from the highest sedimentary rocks dominating the lowest part of the section. A major influx of metamorphic minerals occurs in the Burdigalian, and high-pressure (HP) index minerals from the structurally lowest Nevado-Filabride Complex appear at the top of the section in the Langhian. Plot (b) illustrates the accompanying increase of garnets. Ratios of stable reworked (tourmaline, zircon, rutile and apatite) to metamorphic minerals are presented in plot (c).



