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Preface

These notes have been prepared as support to a short course on compositional data
analysis. Their aim is to transmit the basic concepts and skills for simple applications,
thus setting the premises for more advanced projects. One should be aware that frequent
updates will be required in the near future, as the theory presented here is a field of
active research.

The notes are based both on the monograph by John Aitchison, Statistical analysis
of compositional data (1986), and on recent developments that complement the theory
developed there, mainly those by Aitchison, 1997; Barceló-Vidal et al., 2001; Billheimer
et al., 2001; Pawlowsky-Glahn and Egozcue, 2001, 2002; Aitchison et al., 2002; Egozcue
et al., 2003; Pawlowsky-Glahn, 2003; Egozcue and Pawlowsky-Glahn, 2005. To avoid
constant references to mentioned documents, only complementary references will be
given within the text.

Readers should be aware that for a thorough understanding of compositional data
analysis, a good knowledge in standard univariate statistics, basic linear algebra and
calculus, complemented with an introduction to applied multivariate statistical analysis,
is a must. The specific subjects of interest in multivariate statistics in real space can
be learned in parallel from standard textbooks, like for instance Krzanowski (1988)
and Krzanowski and Marriott (1994) (in English), Fahrmeir and Hamerle (1984) (in
German), or Peña (2002) (in Spanish). Thus, the intended audience goes from advanced
students in applied sciences to practitioners.

Concerning notation, it is important to note that, to conform to the standard praxis
of registering samples as a matrix where each row is a sample and each column is a
variate, vectors will be considered as row vectors to make the transfer from theoretical
concepts to practical computations easier.

Most chapters end with a list of exercises. They are formulated in such a way that
they have to be solved using an appropriate software. A user friendly, MS-Excel based
freeware to facilitate this task can be downloaded from the web at the following address:

http://ima.udg.edu/Recerca/EIO/inici eng.html

Details about this package can be found in Thió-Henestrosa and Mart́ın-Fernández
(2005) or Thió-Henestrosa et al. (2005). There is also available a whole library of

i



ii Preface

subroutines for Matlab, developed mainly by John Aitchison, which can be obtained
from John Aitchison himself or from anybody of the compositional data analysis group
at the University of Girona. Finally, those interested in working with R (or S-plus)
may either use the set of functions “mixeR” by Bren (2003), or the full-fledged package
“compositions” by van den Boogaart and Tolosana-Delgado (2005).
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Chapter 1

Introduction

The awareness of problems related to the statistical analysis of compositional data
analysis dates back to a paper by Karl Pearson (1897) which title began significantly
with the words “On a form of spurious correlation ... ”. Since then, as stated in
Aitchison and Egozcue (2005), the way to deal with this type of data has gone through
roughly four phases, which they describe as follows:

The pre-1960 phase rode on the crest of the developmental wave of stan-
dard multivariate statistical analysis, an appropriate form of analysis for
the investigation of problems with real sample spaces. Despite the obvious
fact that a compositional vector—with components the proportions of some
whole—is subject to a constant-sum constraint, and so is entirely different
from the unconstrained vector of standard unconstrained multivariate sta-
tistical analysis, scientists and statisticians alike seemed almost to delight in
applying all the intricacies of standard multivariate analysis, in particular
correlation analysis, to compositional vectors. We know that Karl Pearson,
in his definitive 1897 paper on spurious correlations, had pointed out the
pitfalls of interpretation of such activity, but it was not until around 1960
that specific condemnation of such an approach emerged.

In the second phase, the primary critic of the application of standard
multivariate analysis to compositional data was the geologist Felix Chayes
(1960), whose main criticism was in the interpretation of product-moment
correlation between components of a geochemical composition, with negative
bias the distorting factor from the viewpoint of any sensible interpretation.
For this problem of negative bias, often referred to as the closure problem,
Sarmanov and Vistelius (1959) supplemented the Chayes criticism in geolog-
ical applications and Mosimann (1962) drew the attention of biologists to it.
However, even conscious researchers, instead of working towards an appro-
priate methodology, adopted what can only be described as a pathological
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2 Chapter 1. Introduction

approach: distortion of standard multivariate techniques when applied to
compositional data was the main goal of study.

The third phase was the realisation by Aitchison in the 1980’s that com-
positions provide information about relative, not absolute, values of com-
ponents, that therefore every statement about a composition can be stated
in terms of ratios of components (Aitchison, 1981, 1982, 1983, 1984). The
facts that logratios are easier to handle mathematically than ratios and
that a logratio transformation provides a one-to-one mapping on to a real
space led to the advocacy of a methodology based on a variety of logratio
transformations. These transformations allowed the use of standard uncon-
strained multivariate statistics applied to transformed data, with inferences
translatable back into compositional statements.

The fourth phase arises from the realisation that the internal simpli-
cial operation of perturbation, the external operation of powering, and the
simplicial metric, define a metric vector space (indeed a Hilbert space) (Bill-
heimer et al. 1997, 2001; Pawlowsky-Glahn and Egozcue, 2001). So, many
compositional problems can be investigated within this space with its spe-
cific algebraic-geometric structure. There has thus arisen a staying-in-the-
simplex approach to the solution of many compositional problems (Mateu-
Figueras, 2003; Pawlowsky-Glahn, 2003). This staying-in-the-simplex point
of view proposes to represent compositions by their coordinates, as they live
in an Euclidean space, and to interpret them and their relationships from
their representation in the simplex. Accordingly, the sample space of ran-
dom compositions is identified to be the simplex with a simplicial metric and
measure, different from the usual Euclidean metric and Lebesgue measure
in real space.

The third phase, which mainly deals with (log-ratio) transformation of
raw data, deserves special attention because these techniques have been very
popular and successful over more than a century; from the Galton-McAlister
introduction of such an idea in 1879 in their logarithmic transformation for
positive data, through variance-stabilising transformations for sound analy-
sis of variance, to the general Box-Cox transformation (Box and Cox, 1964)
and the implied transformations in generalised linear modelling. The logra-
tio transformation principle was based on the fact that there is a one-to-one
correspondence between compositional vectors and associated logratio vec-
tors, so that any statement about compositions can be reformulated in terms
of logratios, and vice versa. The advantage of the transformation is that it
removes the problem of a constrained sample space, the unit simplex, to one
of an unconstrained space, multivariate real space, opening up all available
standard multivariate techniques. The original transformations were princi-
pally the additive logratio transformation (Aitchison, 1986, p.113) and the
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centred logratio transformation (Aitchison, 1986, p.79). The logratio trans-
formation methodology seemed to be accepted by the statistical community;
see for example the discussion of Aitchison (1982). The logratio method-
ology, however, drew fierce opposition from other disciplines, in particular
from sections of the geological community. The reader who is interested in
following the arguments that have arisen should examine the Letters to the
Editor of Mathematical Geology over the period 1988 through 2002.

The notes presented here correspond to the fourth phase. They pretend to sum-
marise the state-of-the-art in the staying-in-the-simplex approach. Therefore, the first
part will be devoted to the algebraic-geometric structure of the simplex, which we call
Aitchison geometry.
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Chapter 2

Compositional data and their

sample space

2.1 Basic concepts

Definition 2.1. A row vector, x = [x1, x2, . . . , xD], is defined as a D-part composition
when all its components are strictly positive real numbers and they carry only relative
information.

Indeed, that compositional information is relative is implicitly stated in the units, as
they are always parts of a whole, like weight or volume percent, ppm, ppb, or molar
proportions. The most common examples have a constant sum κ and are known in the
geological literature as closed data (Chayes, 1971). Frequently, κ = 1, which means
that measurements have been made in, or transformed to, parts per unit, or κ = 100,
for measurements in percent. Other units are possible, like ppm or ppb, which are
typical examples for compositional data where only a part of the composition has been
recorded; or, as recent studies have shown, even concentration units (mg/L, meq/L,
molarities and molalities), where no constant sum can be feasibly defined (Buccianti
and Pawlowsky-Glahn, 2005; Otero et al., 2005).

Definition 2.2. The sample space of compositional data is the simplex, defined as

SD = {x = [x1, x2, . . . , xD] |xi > 0, i = 1, 2, . . . , D;
D
∑

i=1

xi = κ}. (2.1)

However, this definition does not include compositions in e.g. meq/L. Therefore, a more
general definition, together with its interpretation, is given in Section 2.2.

Definition 2.3. For any vector of D real positive components

z = [z1, z2, . . . , zD] ∈ R
D
+

5



6 Chapter 2. Sample space

Figure 2.1: Left: Simplex imbedded in R
3. Right: Ternary diagram.

(zi > 0 for all i = 1, 2, . . . , D), the closure of z is defind as

C(z) =

[

κ · z1
∑D

i=1 zi

,
κ · z2
∑D

i=1 zi

, · · · ,
κ · zD
∑D

i=1 zi

]

.

The result is the same vector rescaled so that the sum of its components is κ. This
operation is required for a formal definition of subcomposition. Note that κ depends
on the units of measurement: usual values are 1 (proportions), 100 (%), 106 (ppm) and
109 (ppb).

Definition 2.4. Given a composition x, a subcomposition xs with s parts is obtained
applying the closure operation to a subvector [xi1 , xi2 , . . . , xis] of x. Subindexes i1, . . . , is
tell us which parts are selected in the subcomposition, not necessarily the first s ones.

Very often, compositions contain many variables; e.g., the major oxide bulk compo-
sition of igneous rocks have around 10 elements, and they are but a few of the total
possible. Nevertheless, one seldom represents the full sample. In fact, most of the
applied literature on compositional data analysis (mainly in geology) restrict their fig-
ures to 3-part (sub)compositions. For 3 parts, the simplex is an equilateral triangle, as
the one represented in Figure 2.1 left, with vertices at A = [κ, 0, 0], B = [0, κ, 0] and
C = [0, 0, κ]. But this is commonly visualized in the form of a ternary diagram—which
is an equivalent representation—. A ternary diagram is an equilateral triangle such
that a generic sample p = [pa, pb, pc] will plot at a distance pa from the opposite side
of vertex A, at a distance pb from the opposite side of vertex B, and at a distance pc

from the opposite side of vertex C, as shown in Figure 2.1 right. The triplet [pa, pb, pc]
is commonly called the barycentric coordinates of p, easily interpretable but useless in
plotting (plotting them would yield the three-dimensional left-hand plot of Figure 2.1).
What is needed (to get the right-hand plot of the same figure) is the expression of the
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coordinates of the vertices and of the samples in a 2-dimensional Cartesian coordinate
system [u, v], and this is given in Appendix A.

Finally, if only some parts of the composition are available, we may either define
a fill up or residual value, or simply close the observed subcomposition. Note that,
since we almost never analyse every possible part, in fact we are always working with
a subcomposition: the subcomposition of analysed parts. In any case, both methods
(fill-up or closure) should lead to identical results.

2.2 Principles of compositional analysis

Three conditions should be fulfilled by any statistical method to be applied to com-
positions: scale invariance, permutation invariance, and subcompositional coherence
(Aitchison, 1986).

2.2.1 Scale invariance

The most important characteristic of compositional data is that they carry only relative
information. Let us explain this concept with an example. In a paper with the sugges-
tive title of “unexpected trend in the compositional maturity of second-cycle sands”,
Solano-Acosta and Dutta (2005) analysed the lithologic composition of a sandstone and
of its derived recent sands, looking at the percentage of grains made up of only quartz,
of only feldspar, or of rock fragments. For medium sized grains coming from the parent
sandstone, they report an average composition [Q, F, R] = [53, 41, 6]%, whereas for the
daughter sands the mean values are [37, 53, 10]%. One expects that feldspar and rock
fragments decrease as the sediment matures, thus they should be less important in a
second generation sand. “Unexpectedly” (or apparently), this does not happen in their
example. To pass from the parent sandstone to the daughter sand, we may think of
several different changes, yielding exactly the same final composition. Assume those
values were weight percent (in gr/100 gr of bulk sediment). Then, one of the following
might have happened:

• Q suffered no change passing from sandstone to sand, but 35 gr F and 8 gr R were
added to the sand (for instance, due to comminution of coarser grains of F and R
from the sandstone),

• F was unchanged, but 25 gr Q were depleted from the sandstone and at the same
time 2 gr R were added (for instance, because Q was better cemented in the
sandstone, thus it tends to form coarser grains),

• any combination of the former two extremes.
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The first two cases yield final masses of [53, 76, 14] gr, respectively [28, 41, 8] gr. In a
purely compositional data set, we do not know if we added or subtracted mass from
the sandstone to the sand. Thus, we cannot decide which of these cases really oc-
curred. Without further (non-compositional) information, there is no way to distin-
guish between [53, 76, 14] gr and [28, 41, 8] gr, as we only have the value of the sand
composition after closure. Closure is a projection of any point in the positive orthant
of D-dimensional real space onto the simplex. All points on a ray starting at the
origin (e.g., [53, 76, 14] and [28, 41, 8]) are projected onto the same point of SD (e.g.,
[37, 53, 10]%). We say that the ray is an equivalence class and the point on SD a rep-
resentant of the class: Figure 2.2 shows this relationship. Moreover, if we change the

Figure 2.2: Representation of the compositional equivalence relationship. A represents the original
sandstone composition, B the final sand composition, F the amount of each part if feldspar was added
to the system (first hypothesis), and Q the amount of each part if quartz was depleted from the system
(second hypothesis). Note that the points B, Q and F are compositionally equivalent.

units of our data (for instance, from % to ppm), we simply multiply all our points by
the constant of change of units, moving them along their rays to the intersections with
another triangle, parallel to the plotted one.

Definition 2.5. Two vectors of D positive real components x,y ∈ R
D
+ (xi, yi ≥ 0 for all

i = 1, 2, . . . , D), are compositionally equivalent if there exists a positive scalar λ ∈ R
+

such that x = λ · y and, equivalently, C(x) = C(y).

It is highly reasonable to ask our analyses to yield the same result, independently of
the value of λ. This is what Aitchison (1986) called scale invariance:
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Definition 2.6. a function f(·) is scale-invariant if for any positive real value λ ∈ R
+

and for any composition x ∈ SD, the function satisfies f(λx) = f(x), i.e. it yields the
same result for all vectors compositionally equivalent.

This can only be achieved if f(·) is a function only of log-ratios of the parts in x

(equivalently, of ratios of parts) (Aitchison, 1997; Barceló-Vidal et al., 2001).

2.2.2 Permutation invariance

A function is permutation-invariant if it yields equivalent results when we change the
ordering of our parts in the composition. Two examples might illustrate what “equiva-
lent” means here. If we are computing the distance between our initial sandstone and
our final sand compositions, this distance should be the same if we work with [Q, F, R]
or if we work with [F, R, Q] (or any other permutation of the parts). On the other
side, if we are interested in the change occurred from sandstone to sand, results should
be equal after reordering. A classical way to get rid of the singularity of the classical
covariance matrix of compositional data is to erase one component: this procedure is
not permutation-invariant, as results will largely depend on which component is erased.

2.2.3 Subcompositional coherence

The final condition is subcompositional coherence: subcompositions should behave as
orthogonal projections do in conventional real analysis. The size of a projected segment
is less or equal than the size of the segment itself. This general principle, though
shortly stated, has several practical implications, explained in the next chapters. The
most illustrative, however are the following two.

• The distance measured between two full compositions must be greater (or at least
equal) then the distance between them when considering any subcomposition.
This particular behaviour of the distance is called subcompositional dominance.
Excercise 2.4 proves that the Euclidean distance between compositional vectors
does not fulfill this condition, and is thus ill-suited to measure distance between
compositions.

• If we erase a non-informative part, our results should not change; for instance if
we have available hydrogeochemical data from a source, and we are interested in
classifying the kind of rocks that water washed, we will mostly use the relations
between some major oxides and ions (SO2+

4 , HCO−
3 , Cl−, to mention a few), and

we should get the same results working with meq/L (including implicitly water
content), or in weight percent of the ions of interest.
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2.3 Exercises

Exercise 2.1. If data have been measured in ppm, what is the value of the constant
κ?

Exercise 2.2. Plot a ternary diagram using different values for the constant sum κ.

Exercise 2.3. Verify that data in table 2.1 satisfy the conditions for being composi-
tional. Plot them in a ternary diagram.

Table 2.1: Simulated data set.

sample 1 2 3 4 5 6 7 8 9 10
x1 79.07 31.74 18.61 49.51 29.22 21.99 11.74 24.47 5.14 15.54
x2 12.83 56.69 72.05 15.11 52.36 59.91 65.04 52.53 38.39 57.34
x3 8.10 11.57 9.34 35.38 18.42 18.10 23.22 23.00 56.47 27.11

sample 11 12 13 14 15 16 17 18 19 20
x1 57.17 52.25 77.40 10.54 46.14 16.29 32.27 40.73 49.29 61.49
x2 3.81 23.73 9.13 20.34 15.97 69.18 36.20 47.41 42.74 7.63
x3 39.02 24.02 13.47 69.12 37.89 14.53 31.53 11.86 7.97 30.88

Exercise 2.4. Compute the Euclidean distance between the first two vectors of table
2.1. Imagine we originally measured a fourth variable x4, which was constant for all
samples, and equal to 5%. Take the first two vectors, close them to sum up to 95%, add
the fourth variable to them (so that they sum up to 100%) and compute the Euclidean
distance between the closed vectors. If the Euclidean distance is subcompositionally
dominant, the distance measured in 4 parts must be greater or equal to the distance
measured in the 3 part subcomposition.



Chapter 3

The Aitchison geometry

3.1 General comments

In real space we are used to add vectors, to multiply them by a constant or scalar
value, to look for properties like orthogonality, or to compute the distance between two
points. All this, and much more, is possible because the real space is a linear vector
space with an Euclidean metric structure. We are familiar with its geometric structure,
the Euclidean geometry, and we represent our observations within this geometry. But
this geometry is not a proper geometry for compositional data.

To illustrate this assertion, consider the compositions

[5, 65, 30], [10, 60, 30], [50, 20, 30], and [55, 15, 30].

Intuitively we would say that the difference between [5, 65, 30] and [10, 60, 30] is not
the same as the difference between [50, 20, 30] and [55, 15, 30]. The Euclidean distance
between them is certainly the same, as there is a difference of 5 units both between
the first and the second components, but in the first case the proportion in the first
component is doubled, while in the second case the relative increase is about 10%, and
this relative difference seems more adequate to describe compositional variability.

This is not the only reason for discarding Euclidean geometry as a proper tool for
analysing compositional data. Problems might appear in many situations, like those
where results end up outside the sample space, e.g. when translating compositional vec-
tors, or computing joint confidence regions for random compositions under assumptions
of normality, or using hexagonal confidence regions. This last case is paradigmatic, as
such hexagons are often naively cut when they lay partly outside the ternary diagram,
and this without regard to any probability adjustment. This kind of problems are not
just theoretical: they are practical and interpretative.

What is needed is a sensible geometry to work with compositional data. In the
simplex, things appear not as simple as we feel they are in real space, but it is possible
to find a way of working in it that is completely analogous. First of all, we can define

11



12 Chapter 3. Aitchison geometry

two operations which give the simplex a vector space structure. The first one is the
perturbation operation, which is analogous to addition in real space, the second one is
the power transformation, which is analogous to multiplication by a scalar in real space.
Both require in their definition the closure operation; recall that closure is nothing else
but the projection of a vector with positive components onto the simplex. Second, we
can obtain a linear vector space structure, and thus a geometry, on the simplex. We just
add an inner product, a norm and a distance to the previous definitions. With the inner
product we can project compositions onto particular directions, check for orthogonality
and determine angles between compositional vectors; with the norm we can compute
the length of a composition; the possibilities of a distance should be clear. With all
together we can operate in the simplex in the same way as we operate in real space.

3.2 Vector space structure

The basic operations required for a vector space structure of the simplex follow. They
use the closure operation given in Definition 2.3.

Definition 3.1. Perturbation of a composition x ∈ SD by a composition y ∈ SD,

x ⊕ y = C [x1y1, x2y2, . . . , xDyD] .

Definition 3.2. Power transformation of a composition x ∈ SD by a constant α ∈ R,

α ⊙ x = C [xα
1 , xα

2 , . . . , xα
D] .

For an illustration of the effect of perturbation and power transformation on a set
of compositions, see Figure 3.1.

The simplex , (SD,⊕,⊙), with the perturbation operation and the power trans-
formation, is a vector space. This means the following properties hold, making them
analogous to translation and scalar multiplication:

Property 3.1. (SD,⊕) has a commutative group structure; i.e., for x, y, z ∈ SD it
holds

1. commutative property: x ⊕ y = y ⊕ x;

2. associative property: (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z);

3. neutral element:

n = C [1, 1, . . . , 1] =

[

1

D
,

1

D
, . . . ,

1

D

]

;

n is the baricenter of the simplex and is unique;
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Figure 3.1: Left: Perturbation of initial compositions (◦) by p = [0.1, 0.1, 0.8] resulting in compo-
sitions (⋆). Right: Power transformation of compositions (⋆) by α = 0.2 resulting in compositions
(◦).

4. inverse of x: x−1 = C
[

x−1
1 , x−1

2 , . . . , x−1
D

]

; thus, x ⊕ x−1 = n. By analogy with
standard operations in real space, we will write x ⊕ y−1 = x ⊖ y.

Property 3.2. The power transformation satisfies the properties of an external product.
For x,y ∈ SD, α, β ∈ R it holds

1. associative property: α ⊙ (β ⊙ x) = (α · β) ⊙ x;

2. distributive property 1: α ⊙ (x ⊕ y) = (α ⊙ x) ⊕ (α ⊙ y);

3. distributive property 2: (α + β) ⊙ x = (α ⊙ x) ⊕ (β ⊙ x);

4. neutral element: 1 ⊙ x = x; the neutral element is unique.

Note that the closure operation cancels out any constant and, thus, the closure
constant itself is not important from a mathematical point of view. This fact allows
us to omit in intermediate steps of any computation the closure without problem. It
has also important implications for practical reasons, as shall be seen during simplicial
principal component analysis. We can express this property for z ∈ R

D
+ and x ∈ SD as

x ⊕ (α ⊙ z) = x ⊕ (α ⊙ C(z)). (3.1)

Nevertheless, one should be always aware that the closure constant is very important
for the correct interpretation of the units of the problem at hand. Therefore, controlling
for the right units should be the last step in any analysis.
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3.3 Inner product, norm and distance

To obtain a linear vector space structure, we take the following inner product, with
associated norm and distance:

Definition 3.3. Inner product of x,y ∈ SD,

〈x,y〉a =
1

2D

D
∑

i=1

D
∑

j=1

ln
xi

xj
ln

yi

yj
.

Definition 3.4. Norm of x ∈ SD,

‖x‖a =

√

√

√

√

1

2D

D
∑

i=1

D
∑

j=1

(

ln
xi

xj

)2

.

Definition 3.5. Distance between x and y ∈ SD,

da(x,y) = ‖x ⊖ x‖a =

√

√

√

√

1

2D

D
∑

i=1

D
∑

j=1

(

ln
xi

xj
− ln

yi

yj

)2

.

In practice, alternative but equivalent expressions of the inner product, norm and
distance may be useful. Two possible alternatives of the inner product follow:

〈x,y〉a =
1

D

D−1
∑

i=1

D
∑

j=i+1

ln
xi

xj

ln
yi

yj

=
D
∑

i<j

ln xi ln xj −
1

D

(

D
∑

j=1

ln xj

)(

D
∑

k=1

ln xk

)

,

where the notation
∑

i<j means exactly
∑D−1

i=1

∑D
j=i+1.

To refer to the properties of (SD,⊕,⊙) as an Euclidean linear vector space, we shall
talk globally about the Aitchison geometry on the simplex, and in particular about the
Aitchison distance, norm and inner product. Note that in mathematical textbooks,
such a linear vector space is called either real Euclidean space or finite dimensional real
Hilbert space.

The algebraic-geometric structure of SD satisfies standard properties, like compati-
bility of the distance with perturbation and power transformation, i.e.

da(p⊕ x,p⊕ y) = da(x,y), da(α ⊙ x, α ⊙ y) = |α|da(x,y),

for any x,y,p ∈ SD and α ∈ R. For a discussion of these and other properties, see
(Billheimer et al., 2001) or (Pawlowsky-Glahn and Egozcue, 2001). For a comparison
with other measures of difference obtained as restrictions of distances in R

D to SD, see
(Mart́ın-Fernández et al., 1998; Mart́ın-Fernández et al., 1999; Aitchison et al., 2000;
Mart́ın-Fernández, 2001). The Aitchison distance is subcompositionally coherent, as all
this set of operations induce the same linear vector space structure in the subspace cor-
responding to the subcomposition. Finally, the distance is subcomposionally dominant,
as shown in Exercise 3.7.
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3.4 Geometric figures

Within this framework, we can define lines in SD, which we call compositional lines,
as y = x0 ⊕ (α ⊙ x), with x0 the starting point and x the leading vector. Note that
y, x0 and x are elements of SD, while the coefficient α varies in R. To illustrate what
we understand by compositional lines, Figure 3.2 shows two families of parallel lines

x y

z

x y

z

Figure 3.2: Orthogonal grids of compositional lines in S3, equally spaced, 1 unit in Aitchison distance
(Def. 3.5). The grid in the right is rotated 45o with respect to the grid in the left.

in a ternary diagram, forming a square, orthogonal grid of side equal to one Aitchison
distance unit. Recall that parallel lines have the same leading vector, but different
starting points, like for instance y1 = x1 ⊕ (α ⊙ x) and y2 = x2 ⊕ (α ⊙ x), while
orthogonal lines are those for which the inner product of the leading vectors is zero,
i.e., for y1 = x0 ⊕ (α1 ⊙ x1) and y2 = x0 ⊕ (α2 ⊙ x2), with x0 their intersection point
and x1, x2 the corresponding leading vectors, it holds 〈x1,x2〉a = 0. Thus, orthogonal
means here that the inner product given in Definition 3.3 of the leading vectors of two
lines, one of each family, is zero, and one Aitchison distance unit is measured by the
distance given in Definition 3.5.

Once we have a well defined geometry, it is straightforward to define any geometric
figure we might be interested in, like for instance circles, ellipses, or rhomboids, as
illustrated in Figure 3.3.

3.5 Exercises

Exercise 3.1. Consider the two vectors [0.7, 0.4, 0.8] and [0.2, 0.8, 0.1]. Perturb one
vector by the other with and without previous closure. Is there any difference?

Exercise 3.2. Perturb each sample of the data set given in Table 2.1 with x1 =
C [0.7, 0.4, 0.8] and plot the initial and the resulting perturbed data set. What do you
observe?
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x2

x1

x3

n

Figure 3.3: Circles and ellipses (left) and perturbation of a segment (right) in S3.

Exercise 3.3. Apply the power transformation with α ranging from −3 to +3 in steps
of 0.5 to x1 = C [0.7, 0.4, 0.8] and plot the resulting set of compositions. Join them by
a line. What do you observe?

Exercise 3.4. Perturb the compositions obtained in Ex. 3.3 by x2 = C [0.2, 0.8, 0.1].
What is the result?

Exercise 3.5. Compute the Aitchison inner product of x1 = C [0.7, 0.4, 0.8] and x2 =
C [0.2, 0.8, 0.1]. Are they orthogonal?

Exercise 3.6. Compute the Aitchison norm of x1 = C [0.7, 0.4, 0.8] and call it a. Apply
to x1 the power transformation α ⊙ x1 with α = 1/a. Compute the Aitchison norm of
the resulting composition. How do you interpret the result?

Exercise 3.7. Re-do Exercise 2.4, but using the Aitchison distance given in Definition
3.5. Is it subcompositionally dominant?

Exercise 3.8. In a 2-part composition x = [x1, x2], simplify the formula for the Aitchi-
son distance, taking x2 = 1 − x1 (so, using κ = 1). Use it to plot 7 equally-spaced
points in the segment (0, 1) = S2, from x1 = 0.014 to x1 = 0.986.

Exercise 3.9. In a mineral assemblage, several radioactive isotopes have been mea-
sured, obtaining [238U,232 Th,40 K] = [150, 30, 110]ppm. Which will be the composition
after ∆t = 109 years? And after another ∆t years? Which was the composition ∆t
years ago? And ∆t years before that? Close these 5 compositions and represent them
in a ternary diagram. What do you see? Could you write the evolution as an equation?
(Half-life disintegration periods: [238U,232 Th,40 K] = [4.468; 14.05; 1.277] · 109years)



Chapter 4

Coordinate representation

4.1 Introduction

J. Aitchison (1986) used the fact that for compositional data size is irrelevant —as
interest lies in relative proportions of the components measured— to introduce trans-
formations based on ratios, the essential ones being the additive log-ratio transformation
(alr) and the centred log-ratio transformation (clr). Then, he applied classical statistical
analysis to the transformed observations, using the alr transformation for modelling, and
the clr transformation for those techniques based on a metric. The underlying reason
was, that the alr transformation does not preserve distances, whereas the clr transfor-
mation preserves distances but leads to a singular covariance matrix. In mathematical
terms, we say that the alr transformation is an isomorphism, but not an isometry, while
the clr transformation is an isometry, and thus also an isomorphism, but between SD

and a subspace of R
D, leading to degenerate distributions. Thus, Aitchison’s approach

opened up a rigourous strategy, but care had to be applied when using either of both
transformations.

Using the Euclidean vector space structure, it is possible to give an algebraic-
geometric foundation to his approach, and it is possible to go even a step further.
Within this framework, a transformation of coefficients is equivalent to express obser-
vations in a different coordinate system. We are used to work in an orthogonal system,
known as a Cartesian coordinate system; we know how to change coordinates within
this system and how to rotate axis. But neither the clr nor the alr transformations
can be directly associated with an orthogonal coordinate system in the simplex, a fact
that lead Egozcue et al. (2003) to define a new transformation, called ilr (for isometric
logratio) transformation, which is an isometry between SD and R

D−1, thus avoiding
the drawbacks of both the alr and the clr. The ilr stands actually for the association
of coordinates with compositions in an orthonormal system in general, and this is the
framework we are going to present here, together with a particular kind of coordinates,
named balances, because of their usefulness for modelling and interpretation.

17
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4.2 Compositional observations in real space

Compositions in SD are usually expressed in terms of the canonical basis {~e1,~e2, . . . ,~eD}
of R

D. In fact, any vector x ∈ R
D can be written as

x = x1 [1, 0, . . . , 0] + x2 [0, 1, . . . , 0] + · · ·+ xD [0, 0, . . . , 1] =
D
∑

i=1

xi · ~ei , (4.1)

and this is the way we are used to interpret it. The problem is, that the set of vectors
{~e1,~e2, . . . ,~eD} is neither a generating system nor a basis with respect to the vector
space structure of SD defined in Chapter 3. In fact, not every combination of coefficients
gives an element of SD (negative and zero values are not allowed), and the ~ei do not
belong to the simplex as defined in Equation (2.1). Nevertheless, in many cases it
is interesting to express results in terms of compositions, so that interpretations are
feasible in usual units, and therefore one of our purposes is to find a way to state
statistically rigourous results in this coordinate system.

4.3 Generating systems

A first step for defining an appropriate orthonormal basis consists in finding a generating
system which can be used to build the basis. A natural way to obtain such a generating
system is to take {w1,w2, . . . ,wD}, with

wi = C (exp(~ei)) = C [1, 1, . . . , e, . . . , 1] , i = 1, 2, . . . , D , (4.2)

where in each wi the number e is placed in the i-th column, and the operation exp(·) is
assumed to operate component-wise on a vector. In fact, taking into account Equation
(3.1) and the usual rules of precedence for operations in a vector space, i.e., first the
external operation, ⊙, and afterwards the internal operation, ⊕, any vector x ∈ SD can
be written

x =
D
⊕

i=1

ln xi ⊙wi =

= ln x1 ⊙ [e, 1, . . . , 1] ⊕ ln x2 ⊙ [1, e, . . . , 1] ⊕ · · · ⊕ ln xD ⊙ [1, 1, . . . , e] .

It is known that the coefficients with respect to a generating system are not unique;
thus, the following equivalent expression can be used as well,

x =

D
⊕

i=1

ln
xi

g(x)
⊙wi =

= ln
x1

g(x)
⊙ [e, 1, . . . , 1] ⊕ · · · ⊕ ln

xD

g(x)
⊙ [1, 1, . . . , e] ,
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where

g(x) =

(

D
∏

i=1

xi

)1/D

= exp

(

1

D

D
∑

i=1

ln xi

)

,

is the component-wise geometric mean of the composition. One recognises in the coef-
ficients of this second expression the centred logratio transformation defined by Aitchi-
son (1986). Note that we could indeed replace the denominator by any constant. This
non-uniqueness is consistent with the concept of compositions as equivalence classes
(Barceló-Vidal et al., 2001).

We will denote by clr the transformation that gives the expression of a composition
in centred logratio coefficients

clr(x) =

[

ln
x1

g(x)
, ln

x2

g(x)
, . . . , ln

xD

g(x)

]

= ξ. (4.3)

The inverse transformation, which gives us the coefficients in the canonical basis of real
space, is then

clr−1(ξ) = C [exp(ξ1), exp(ξ2), . . . , exp(ξD)] = x. (4.4)

The centred logratio transformation is symmetrical in the components, but the price is
a new constraint on the transformed sample: the sum of the components has to be zero.
This means that the transformed sample will lie on a plane, which goes through the ori-
gin of R

D and is orthogonal to the vector of unities [1, 1, . . . , 1]. But, more importantly,
it means also that for random compositions the covariance matrix of ξ is singular, i.e.
the determinant is zero. Certainly, generalised inverses can be used in this context when
necessary, but not all statistical packages are designed for it and problems might arise
during computation. Furthermore, clr coefficients are not subcompositionally coherent,
because the geometric mean of the parts of a subcomposition g(xs) is not necessarily
equal to that of the full composition, and thus the clr coefficients are in general not the
same.

A formal definition of the clr coefficients is the following.

Definition 4.1. For a composition x ∈ SD, the clr coefficients are the components of
ξ = [ξ1, ξ2, . . . , ξD] = clr(x), the unique vector satisfying

x = clr−1(ξ) = C (exp(ξ)) ,

D
∑

i=1

ξi = 0 .

The i-th clr coefficient is

ξi =
ln xi

g(x)
,

being g(x) the geometric mean of the components of x.
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Although the clr coefficients are not coordinates with respect to a basis of the sim-
plex, they have very important properties. Among them the translation of operations
and metrics from the simplex into the real space deserves special attention. Denote or-
dinary distance, norm and inner product in R

D−1 by d(·, ·), ‖ · ‖, and 〈·, ·〉 respectively.
The following property holds.

Property 4.1. Consider xk ∈ SD and real constants α, β; then

clr(α ⊙ x1 ⊕ β ⊙ x2) = α · clr(x1) + β · clr(x2) ;

〈x1,x2〉a = 〈clr(x1), clr(x2)〉 ; (4.5)

‖x1‖a = ‖clr(x1)‖ , da(x1,x2) = d(clr(x1), clr(x2)) .

4.4 Orthonormal coordinates

Omitting one vector of the generating system given in Equation (4.2) a basis is obtained.
For example, omitting wD results in {w1,w2, . . . ,wD−1}. This basis is not orthonormal,
as can be shown computing the inner product of any two of its vectors. But a new basis,
orthonormal with respect to the inner product, can be readily obtained using the well-
known Gram-Schmidt procedure (Egozcue et al., 2003). The basis thus obtained will
be just one out of the infinitely many orthonormal basis which can be defined in any
Euclidean space. Therefore, it is convenient to study their general characteristics.

Let {e1, e2, . . . , eD−1} be a generic orthonormal basis of the simplex SD and consider
the (D − 1, D)-matrix Ψ whose rows are clr(ei). An orthonormal basis satisfies that
〈ei, ej〉a = δij (δij is the Kronecker-delta, which is null for i 6= j, and one whenever
i = j). This can be expressed using (4.5),

〈ei, ej〉a = 〈clr(ei), clr(ej)〉 = δij .

It implies that the (D − 1, D)-matrix Ψ satisfies ΨΨ′ = ID−1, being ID−1 the identity
matrix of dimension D − 1. When the product of these matrices is reversed, then
Ψ′Ψ = ID − (1/D)1′

D1D, with ID the identity matrix of dimension D, and 1D a D-
row-vector of ones; note this is a matrix of rank D − 1. The compositions of the basis
are recovered from Ψ using clr−1 in each row of the matrix. Recall that these rows of
Ψ also add up to 0 because they are clr coefficients (see Definition 4.1).

Once an orthonormal basis has been chosen, a composition x ∈ SD is expressed as

x =

D−1
⊕

i=1

x∗
i ⊙ ei , x∗

i = 〈x, ei〉a , (4.6)

where x∗ =
[

x∗
1, x

∗
2, . . . , x

∗
D−1

]

is the vector of coordinates of x with respect to the
selected basis. The function ilr : SD → R

D−1, assigning the coordinates x∗ to x has
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been called ilr (isometric log-ratio) transformation which is an isometric isomorphism of
vector spaces. For simplicity, sometimes this function is also denoted by h, i.e. ilr ≡ h
and also the asterisk (∗) is used to denote coordinates if convenient. The following
properties hold.

Property 4.2. Consider xk ∈ SD and real constants α, β; then

h(α ⊙ x1 ⊕ β ⊙ x2) = α · h(x1) + β · h(x2) = α · x∗
1 + β · x∗

2 ;

〈x1,x2〉a = 〈h(x1), h(x2)〉 = 〈x∗
1,x

∗
2〉 ;

‖x1‖a = ‖h(x1)‖ = ‖x∗
1‖ , da(x1,x2) = d(h(x1), h(x2)) = d(x∗

1,x
∗
2) .

The main difference between Property 4.1 for clr and Property 4.2 for ilr is that the
former refers to vectors of coefficients in R

D, whereas the latter deals with vectors of
coordinates in R

D−1, thus matching the actual dimension of SD.
Taking into account Properties 4.1 and 4.2, and using the clr image matrix of the

basis, Ψ, the coordinates of a composition x can be expressed in a compact way. As
written in (4.6), a coordinate is an Aitchison inner product, and it can be expressed as
an ordinary inner product of the clr coefficients. Grouping all coordinates in a vector

x∗ = ilr(x) = h(x) = clr(x) · Ψ′ , (4.7)

a simple matrix product is obtained.
Inversion of ilr, i.e. recovering the composition from its coordinates, corresponds

to Equation (4.6). In fact, taking clr coefficients in both sides of (4.6) and taking into
account Property 4.1,

clr(x) = x∗Ψ , x = C (exp(x∗Ψ)) . (4.8)

A suitable algorithm to recover x from its coordinates x∗ consists of the following steps:
(i) construct the clr-matrix of the basis, Ψ; (ii) carry out the matrix product x∗Ψ; and
(iii) apply clr−1 to obtain x.

There are some ways to define orthonormal bases in the simplex. The main criterion
for the selection of an orthonormal basis is that it enhances the interpretability of
the representation in coordinates. For instance, when performing principal component
analysis an orthogonal basis is selected so that the first coordinate (principal component)
represents the direction of maximum variability, etc. Particular cases deserving our
attention are those bases linked to a sequential binary partition of the compositional
vector (Egozcue and Pawlowsky-Glahn, 2005). The main interest of such bases is that
they are easily interpreted in terms of grouped parts of the composition. The Cartesian
coordinates of a composition in such a basis are called balances and the compositions of
the basis balancing elements. A sequential binary partition is a hierarchy of the parts of
a composition. In the first order of the hierarchy, all parts are split into two groups. In
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Table 4.1: Example of sign matrix, used to encode a sequential binary partition and build an
orthonormal basis. The lower part of the table shows the matrix Ψ of the basis.

order x1 x2 x3 x4 x5 x6 r s
1 +1 +1 −1 −1 +1 +1 4 2
2 +1 −1 0 0 −1 −1 1 3
3 0 +1 0 0 −1 −1 1 2
4 0 0 0 0 +1 −1 1 1
5 0 0 −1 +1 0 0 1 1

1 + 1√
12

+ 1√
12

− 1√
3

− 1√
3

+ 1√
12

+ 1√
12

2 +
√

3
2

− 1√
12

0 0 − 1√
12

− 1√
12

3 0 +
√

2√
3

0 0 − 1√
6

− 1√
6

4 0 0 0 0 + 1√
2

− 1√
2

5 0 0 + 1√
2

0 0 − 1√
2

the following steps, each group is in turn split into two groups, and the process continues
until all groups have a single part, as illustrated in Table 4.1. For each order of the
partition, one can define the balance between the two sub-groups formed at that level:
if i1, i2, . . . , ir are the r parts of the first sub-group (coded by +1), and j1, j2, . . . , js the
s parts of the second (coded by −1), the balance is defined as the normalised logratio
of the geometric mean of each group of parts:

b =

√

rs

r + s
ln

(xi1xi2 · · ·xir)
1/r

(xj1xj2 · · ·xjs
)1/s

= ln
(xi1xi2 · · ·xir)

a+

(xj1xj2 · · ·xjs
)a−

. (4.9)

This means that, for the i-th balance, the parts receive a weight of either

a+ = +
1

r

√

rs

r + s
, a− = −1

s

√

rs

r + s
or a0 = 0, (4.10)

a+ for those in the numerator, a− for those in the denominator, and a0 for those not
involved in that splitting. The balance is then

bi =

D
∑

j=1

aij ln xj ,

where aij equals a+ if the code, at the i-th order partition, is +1 for the j-th part; the
value is a− if the code is −1; and a0 = 0 if the code is null, using the values of r and s
at the i-th order partition. Note that the matrix with entries aij is just the matrix Ψ,
as shown in the lower part of Table 4.1.
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Example 4.1. In Egozcue et al. (2003) an orthonormal basis of the simplex was
obtained using a Gram-Schmidt technique. It corresponds to the sequential binary
partition shown in Table 4.2. The main feature is that the entries of the Ψ matrix can

Table 4.2: Example of sign matrix for D = 5, used to encode a sequential binary partition in a
standard way. The lower part of the table shows the matrix Ψ of the basis.

level x1 x2 x3 x4 x5 r s
1 +1 +1 +1 +1 −1 4 1
2 +1 +1 +1 −1 0 3 1
3 +1 +1 −1 0 0 2 1
4 +1 −1 0 0 0 1 1

1 + 1√
20

+ 1√
20

+ 1√
20

+ 1√
20

− 2√
5

2 + 1√
12

+ 1√
12

+ 1√
12

−
√

3√
4

0

3 + 1√
6

+ 1√
6

−
√

2√
3

0 0

4 + 1√
2

− 1√
2

0 0 0

be easily expressed as

Ψij = aji = +

√

1

(D − i)(D − i + 1)
, j ≤ D − i ,

Ψij = aji = −
√

D − i

D − i + 1
, j = D − i ;

and Ψij = 0 otherwise. This matrix is closely related to the so-called Helmert matrices.

The interpretation of balances relays on some of its properties. The first one is the
expression itself, specially when using geometric means in the numerator and denomi-
nator as in

b =

√

rs

r + s
ln

(x1 · · ·xr)
1/r

(xr+1 · · ·xD)1/s
.

The geometric means are central values of the parts in each group of parts; its ratio
measures the relative weight of each group; the logarithm provides the appropriate
scale; and the square root coefficient is a normalising constant which allows to compare
numerically different balances. A positive balance means that, in (geometric) mean,
the group of parts in the numerator has more weight in the composition than the group
in the denominator (and conversely for negative balances).

A second interpretative element is related to the intuitive idea of balance. Imagine
that in an election, the parties have been divided into two groups, the left and the right
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wing ones (there are more than one party in each wing). If, from a journal, you get only
the percentages within each group, you are unable to know which wing, and obviously
which party, has won the elections. You probably are going to ask for the balance
between the two wings as the information you need to complete the actual state of the
elections. The balance, as defined here, permits you to complete the information. The
balance is the remaining relative information about the elections once the information
within the two wings has been removed. To be more precise, assume that the parties
are six and the composition of the votes is x ∈ S6; assume the left wing contested
with 4 parties represented by the group of parts {x1, x2, x5, x6} and only two parties
correspond to the right wing {x3, x4}. Consider the sequential binary partition in Table
4.1. The first partition just separates the two wings and thus the balance informs
us about the equilibrium between the two wings. If one leaves out this balance, the
remaining balances inform us only about the left wing (balances 3,4) and only about
the right wing (balance 5). Therefore, to retain only balance 5 is equivalent to know the
relative information within the subcomposition called right wing. Similarly, balances
2, 3 and 4 only inform about what happened within the left wing. The conclusion is
that the balance 1, the forgotten information in the journal, does not inform us about
relations within the two wings: it only conveys information about the balance between
the two groups representing the wings.

Many questions can be stated which can be handled easily using the balances. For
instance, suppose we are interested in the relationships between the parties within
the left wing and, consequently, we want to remove the information within the right
wing. A traditional approach to this is to remove parts x3 and x4 and then close the
remaining subcomposition. However, this is equivalent to project the composition of 6
parts orthogonally on the subspace associated with the left wing, what is easily done
by setting b5 = 0. If we do so, the obtained projected composition is

xproj = C[x1, x2, g(x3, x4), g(x3, x4), x5, x6] , g(x3, x4) = (x3x4)
1/2 ,

i.e. each part in the right wing has been substituted by the geometric mean within
the right wing. This composition still has the information on the left-right balance,
b1. If we are also interested in removing it (b1 = 0) the remaining information will be
only that within the left-wing subcomposition which is represented by the orthogonal
projection

xleft = C[x1, x2, g(x1, x2, x5, x6), g(x1, x2, x5, x6), x5, x6] ,

with g(x1, x2, x5, x6) = (x1, x2, x5, x6)
1/4. The conclusion is that the balances can be very

useful to project compositions onto special subspaces just by retaining some balances
and making other ones null.
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4.5 Working in coordinates

Coordinates with respect to an orthonormal basis in a linear vector space underly
standard rules of operation. As a consequence, perturbation in SD is equivalent to
translation in real space, and power transformation in SD is equivalent to multiplication.
Thus, if we consider the vector of coordinates h(x) = x∗ ∈ R

D−1 of a compositional
vector x ∈ SD with respect to an arbitrary orthonormal basis, it holds (Property 4.2)

h(x ⊕ y) = h(x) + h(y) = x∗ + y∗ , h(α ⊙ x) = α · h(x) = α · x∗ , (4.11)

and we can think about perturbation as having the same properties in the simplex
as translation has in real space, and of the power transformation as having the same
properties as multiplication.

Furthermore,
da(x,y) = d(h(x), h(y)) = d(x∗,y∗),

where d stands for the usual Euclidean distance in real space. This means that, when
performing analysis of compositional data, results that could be obtained using com-
positions and the Aitchison geometry are exactly the same as those obtained using the
coordinates of the compositions and using the ordinary Euclidean geometry. This latter
possibility reduces the computations to the ordinary operations in real spaces thus fa-
cilitating the applied procedures. The duality of the representation of compositions, in
the simplex and by coordinates, introduces a rich framework where both representations
can be interpreted to extract conclusions from the analysis (see Figures 4.1, 4.2, 4.3,
and 4.4, for illustration). The price is that the basis selected for representation should
be carefully selected for an enhanced interpretation.

Working in coordinates can be also done in a blind way, just selecting a default
basis and coordinates and, when the results in coordinates are obtained, translating the
results back in the simplex for interpretation. This blind strategy, although acceptable,
hides to the analyst features of the analysis that may be relevant. For instance, when
detecting a linear dependence of compositional data on an external covariate, data can
be expressed in coordinates and then the dependence estimated using standard linear
regression. Back in the simplex, data can be plotted with the estimated regression line
in a ternary diagram. The procedure is completely acceptable but the visual picture of
the residuals and a possible non-linear trend in them can be hidden or distorted in the
ternary diagram. A plot of the fitted line and the data in coordinates may reveal new
interpretable features.
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Figure 4.1: Perturbation of a segment in S3 (left) and in coordinates (right).
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Figure 4.2: Powering of a vector in S3 (left) and in coordinates (right).
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Figure 4.3: Circles and ellipses in S3 (left) and in coordinates (right).
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Figure 4.4: Couples of parallel lines in S3 (left) and in coordinates (right).

There is one thing that is crucial in the proposed approach: no zero values are al-
lowed, as neither division by zero is admissible, nor taking the logarithm of zero. We
are not going to discuss this subject here. Methods on how to approach the prob-
lem have been discussed by Aitchison (1986), Fry et al. (1996), Mart́ın-Fernández
et al. (2000), Mart́ın-Fernández (2001), Aitchison and Kay (2003), Bacon-Shone (2003),
Mart́ın-Fernández et al. (2003) and Mart́ın-Fernández et al. (2003).

4.6 Additive log-ratio coordinates

Taking in Equation 4.3 as denominator one of the parts, e.g. the last, then one coefficient
is always 0, and we can suppress the associated vector. Thus, the previous generating
system becomes a basis, taking the other (D − 1) vectors, e.g. {w1,w2, . . . ,wD−1}.
Then, any vector x ∈ SD can be written

x =

D−1
⊕

i=1

ln
xi

xD
⊙ wi =

= ln
x1

xD

⊙ [e, 1, . . . , 1, 1] ⊕ · · · ⊕ ln
xD−1

xD

⊙ [1, 1, . . . , e, 1] .

The coordinates correspond to the well known additive log-ratio transformation (alr)
introduced by (Aitchison, 1986). We will denote by alr the transformation that gives
the expression of a composition in additive log-ratio coordinates

alr(x) =

[

ln
x1

xD
, ln

x2

xD
, ..., ln

xD−1

xD

]

= y.

Note that the alr transformation is not symmetrical in the components. But the essen-
tial problem with alr coordinates is the non-isometric character of this transformation.
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In fact, they are coordinates in an oblique basis, something that affects distances if
the usual Euclidean distance is computed from the alr coordinates. This approach is
frequent in many applied sciences and should be avoided (see for example (Albarède,
1995), p. 42).

4.7 Simplicial matrix notation

Many operations in real spaces are expressed in matrix notation. Since the simplex is
an Euclidean space, matrix notations may be also useful. However, in this framework
a vector of real constants cannot be considered in the simplex although in the real
space they are readily identified. This produces two kind of matrix products which
are introduced in this section. The first is simply the expression of a perturbation-
linear combination of compositions which appears as a power-multiplication of a real
vector by a compositional matrix whose rows are in the simplex. The second one is the
expression of a linear transformation in the simplex: a composition is transformed by
a matrix, involving perturbation and powering, to obtain a new composition. The real
matrix implied in this case is not a general one but when expressed in coordinates it is
completely general.

Perturbation-linear combination of compositions

For a row vector of ℓ scalars a = [a1, a2, . . . , aℓ] and an array of row vectors V =
(v1,v2, . . . ,vℓ)

′, i.e. an (ℓ, D)-matrix,

a ⊙V = [a1, a2, . . . , aℓ] ⊙











v1

v2

...
vℓ











= [a1, a2, . . . , aℓ] ⊙











v11 v12 · · · v1D

v21 v22 · · · v2D
...

...
. . .

...
vℓ1 vℓ2 · · · vℓD











=
ℓ
⊕

i=1

ai ⊙ vi.

The components of this matrix product are

a⊙ V = C
[

ℓ
∏

j=1

v
aj

j1 ,

ℓ
∏

j=1

v
aj

j2 , . . . ,

ℓ
∏

j=1

v
aj

jD

]

.
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In coordinates this simplicial matrix product takes the form of a linear combination of
the coordinate vectors. In fact, if h is the function assigning the coordinates,

h(a⊙ V) = h

(

ℓ
⊕

i=1

ai ⊙ vi

)

=

ℓ
∑

i=1

ai h(vi) .

Example 4.2. A composition in SD can be expressed as a perturbation-linear combi-
nation of the elements of the basis ei, i = 1, 2, . . . , D−1 as in Equation (4.6). Consider
the (D− 1, D)-matrix E = (e1, e2, . . . , eD−1)

′ and the vector of coordinates x∗ = ilr(x).
Equation (4.6) can be re-written as

x = x∗ ⊙ E .

Perturbation-linear transformation of SD: endomorphisms

Consider a row vector of coordinates x∗ ∈ R
D−1 and a general (D−1, D−1)-matrix A∗.

In the real space setting, y∗ = x∗A∗ expresses an endomorphism, obviously linear in the
real sense. Given the isometric isomorphism of the real space of coordinates with the
simplex, the A∗ endomorphism has an expression in the simplex. Taking ilr−1 = h−1 in
the expression of the real endomorphism and using Equation (4.8)

y = C(exp[x∗A∗Ψ]) = C(exp[clr(x)Ψ′A∗Ψ]) (4.12)

where Ψ is the clr matrix of the selected basis and the right-most member has been
obtained applying Equation (4.7) to x∗. The (D, D)-matrix A = Ψ′A∗Ψ has entries

aij =

D−1
∑

k=1

D−1
∑

m=1

ΨkiΨmja
∗
km , i, j = 1, 2, . . . , D .

Substituting clr(x) by its expression as a function of the logarithms of parts, the com-
position y is

y = C
[

D
∏

j=1

x
aj1

j ,

D
∏

j=1

x
aj2

j , . . . ,

D
∏

j=1

x
ajD

j

]

,

which, taking into account that products and powers match the definitions of ⊕ and ⊙,
deserves the definition

y = x ◦ A = x ◦ (Ψ′A∗Ψ) , (4.13)

where ◦ is the perturbation-matrix product representing an endomorphism in the sim-
plex. This matrix product in the simplex should not be confused with that defined
between a vector of scalars and a matrix of compositions and denoted by ⊙.

An important conclusion is that endomorphisms in the simplex are represented by
matrices with a peculiar structure given by A = Ψ′A∗Ψ, which have some remarkable
properties:
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(a) it is a (D, D) real matrix;

(b) each row and each column of A adds to 0;

(c) rank(A) = rank(A∗); particularly, when A∗ is full-rank, rank(A) = D − 1;

(d) the identity endomorphism corresponds to A∗ = ID−1, the identity in R
D−1, and

to A = Ψ′Ψ = ID − (1/D)1′
D1D, where ID is the identity (D, D)-matrix, and 1D

is a row vector of ones.

The matrix A∗ can be recovered from A as A∗ = ΨAΨ′. However, A is not the
only matrix corresponding to A∗ in this transformation. Consider the following (D, D)-
matrix

A = A0 +

D
∑

i=1

ci(~ei)
′1D +

D
∑

j=1

dj1
′
D~ej ,

where, A0 satisfies the above conditions, ~ei = [0, 0, . . . , 1, . . . , 0, 0] is the i-th row-vector
in the canonical basis of R

D, and ci, dj are arbitrary constants. Each additive term
in this expression adds a constant row or column, being the remaining entries null. A
simple development proves that A∗ = ΨAΨ′ = ΨA0Ψ

′. This means that x◦A = x◦A0,
i.e. A, A0 define the same linear transformation in the simplex. To obtain A0 from A,
first compute A∗ = ΨAΨ′ and then compute

A0 = Ψ′A∗Ψ = Ψ′ΨAΨ′Ψ = (ID − (1/D)1′
D1D)A(ID − (1/D)1′

D1D) ,

where the second member is the required computation and the third member explains
that the computation is equivalent to add constant rows and columns to A.

Example 4.3. Consider the matrix

A =

(

0 a2

a1 0

)

representing a linear transformation in S2. The matrix Ψ is

Ψ =

[

1√
2
,− 1√

2

]

.

In coordinates, this corresponds to a (1, 1)-matrix A∗ = (−(a1+a2)/2). The equivalent
matrix A0 = Ψ′A∗Ψ is

A0 =

(

−a1+a2

4
a1+a2

4
a1+a2

4
−a1+a2

4

)

,

whose columns and rows add to 0.
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4.8 Exercises

Exercise 4.1. Consider the data set given in Table 2.1. Compute the clr coefficients
(Eq. 4.3) to compositions with no zeros. Verify that the sum of the transformed
components equals zero.

Exercise 4.2. Using the sign matrix of Table 4.1 and Equation (4.10), compute the
coefficients for each part at each level. Arrange them in a 6× 5 matrix. Which are the
vectors of this basis?

Exercise 4.3. Consider the 6-part composition

[x1, x2, x3, x4, x5, x6] = [3.74, 9.35, 16.82, 18.69, 23.36, 28.04]% .

Using the binary partition of Table 4.1 and Eq. (4.9), compute its 5 balances. Compare
with what you obtained in the preceding exercise.

Exercise 4.4. Consider the log-ratios c1 = ln x1/x3 and c2 = lnx2/x3 in a simplex
S3. They are coordinates when using the alr transformation. Find two unitary vectors
e1 and e2 such that 〈x, ei〉a = ci, i = 1, 2. Compute the inner product 〈e1, e2〉a and
determine the angle between them. Does the result change if the considered simplex is
S7?

Exercise 4.5. When computing the clr of a composition x ∈ SD, a clr coefficient is
ξi = ln(xi/g(x)). This can be consider as a balance between two groups of parts, which
are they and which is the corresponding balancing element?

Exercise 4.6. Six parties have contested elections. In five districts they have obtained
the votes in Table 4.3. Parties are divided into left (L) and right (R) wings. Is there
some relationship between the L-R balance and the relative votes of R1-R2? Select
an adequate sequential binary partition to analyse this question and obtain the cor-
responding balance coordinates. Find the correlation matrix of the balances and give
an interpretation to the maximum correlated two balances. Compute the distances be-
tween the five districts; which are the two districts with the maximum and minimum
inter-distance. Are you able to distinguish some cluster of districts?

Exercise 4.7. Consider the data set given in Table 2.1. Check the data for zeros.
Apply the alr transformation to compositions with no zeros. Plot the transformed data
in R

2.

Exercise 4.8. Consider the data set given in table 2.1 and take the components in a
different order. Apply the alr transformation to compositions with no zeros. Plot the
transformed data in R

2. Compare the result with those obtained in Exercise 4.7.
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Table 4.3: Votes obtained by six parties in five districts.

L1 L2 R1 R2 L3 L4
d1 10 223 534 23 154 161
d2 43 154 338 43 120 123
d3 3 78 29 702 265 110
d4 5 107 58 598 123 92
d5 17 91 112 487 80 90

Exercise 4.9. Consider the data set given in table 2.1. Apply the ilr transformation
to compositions with no zeros. Plot the transformed data in R

2. Compare the result
with the scatterplots obtained in exercises 4.7 and 4.8 using the alr transformation.

Exercise 4.10. Compute the alr and ilr coordinates, as well as the clr coefficients of
the 6-part composition

[x1, x2, x3, x4, x5, x6] = [3.74, 9.35, 16.82, 18.69, 23.36, 28.04]% .

Exercise 4.11. Consider the 6-part composition of the preceding exercise. Using the
binary partition of Table 4.1 and Equation (4.9), compute its 5 balances. Compare with
the results of the preceding exercise.



Chapter 5

Exploratory data analysis

5.1 General remarks

In this chapter we are going to address the first steps that should be performed when-
ever the study of a compositional data set X is initiated. Essentially, these steps are
five. They consist in (1) computing descriptive statistics, i.e. the centre and variation
matrix of a data set, as well as its total variability; (2) centring the data set for a better
visualisation of subcompositions in ternary diagrams; (3) looking at the biplot of the
data set to discover patterns; (4) defining an appropriate representation in orthonormal
coordinates and computing the corresponding coordinates; and (5) compute the sum-
mary statistics of the coordinates and represent the results in a balance-dendrogram.
In general, the last two steps will be based on a particular sequential binary partition,
defined either a priori or as a result of the insights provided by the preceding three steps.
The last step consist of a graphical representation of the sequential binary partition,
including a graphical and numerical summary of descriptive statistics of the associated
coordinates.

Before starting, let us make some general considerations. The first thing in standard
statistical analysis is to check the data set for errors, and we assume this part has been
already done using standard procedures (e.g. using the minimum and maximum of each
component to check whether the values are within an acceptable range). Another, quite
different thing is to check the data set for outliers, a point that is outside the scope
of this short-course. See Barceló et al. (1994, 1996) for details. Recall that outliers
can be considered as such only with respect to a given distribution. Furthermore, we
assume there are no zeros in our samples. Zeros require specific techniques (Fry et al.,
1996; Mart́ın-Fernández et al., 2000; Mart́ın-Fernández, 2001; Aitchison and Kay, 2003;
Bacon-Shone, 2003; Mart́ın-Fernández et al., 2003; Mart́ın-Fernández et al., 2003) and
will be addressed in future editions of this short course.

33
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5.2 Centre, total variance and variation matrix

Standard descriptive statistics are not very informative in the case of compositional
data. In particular, the arithmetic mean and the variance or standard deviation of
individual components do not fit with the Aitchison geometry as measures of central
tendency and dispersion. The skeptic reader might convince himself/herself by doing
exercise 5.1 immediately. These statistics were defined as such in the framework of
Euclidean geometry in real space, which is not a sensible geometry for compositional
data. Therefore, it is necessary to introduce alternatives, which we find in the concepts
of centre (Aitchison, 1997), variation matrix, and total variance (Aitchison, 1986).

Definition 5.1. A measure of central tendency for compositional data is the closed
geometric mean. For a data set of size n it is called centre and is defined as

g = C [g1, g2, . . . , gD] ,

with gi = (
∏n

j=1 xij)
1/n, i = 1, 2, . . . , D.

Note that in the definition of centre of a data set the geometric mean is considered
column-wise (i.e. by parts), while in the clr transformation, given in equation (4.3), the
geometric mean is considered row-wise (i.e. by samples).

Definition 5.2. Dispersion in a compositional data set can be described either by the
variation matrix, originally defined by (Aitchison, 1986) as

T =











t11 t12 · · · t1D

t21 t22 · · · t2D
...

...
. . .

...
tD1 tD2 · · · tDD











, tij = var

(

ln
xi

xj

)

,

or by the normalised variation matrix

T∗ =











t∗11 t∗12 · · · t∗1D

t∗21 t∗22 · · · t∗2D
...

...
. . .

...
t∗D1 t∗D2 · · · t∗DD











, t∗ij = var

(

1√
2

ln
xi

xj

)

.

Thus, tij stands for the usual experimental variance of the log-ratio of parts i and j,
while t∗ij stands for the usual experimental variance of the normalised log-ratio of parts
i and j, so that the log ratio is a balance.

Note that

t∗ij = var

(

1√
2

ln
xi

xj

)

=
1

2
tij ,

and thus T∗ = 1
2
T. Normalised variations have squared Aitchison distance units (see

Figure 3.3).
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Definition 5.3. A measure of global dispersion is the total variance given by

totvar[X] =
1

2D

D
∑

i=1

D
∑

j=1

var

(

ln
xi

xj

)

=
1

2D

D
∑

i=1

D
∑

j=1

tij =
1

D

D
∑

i=1

D
∑

j=1

t∗ij .

By definition, T and T∗ are symmetric and their diagonal will contain only zeros.
Furthermore, neither the total variance nor any single entry in both variation matrices
depend on the constant κ associated with the sample space SD, as constants cancel out
when taking ratios. Consequently, rescaling has no effect. These statistics have further
connections. From their definition, it is clear that the total variation summarises the
variation matrix in a single quantity, both in the normalised and non-normalised version,
and it is possible (and natural) to define it because all parts in a composition share a
common scale (it is by no means so straightforward to define a total variation for a
pressure-temperature random vector, for instance). Conversely, the variation matrix,
again in both versions, explains how the total variation is split among the parts (or
better, among all log-ratios).

5.3 Centring and scaling

A usual way in geology to visualise data in a ternary diagram is to rescale the obser-
vations in such a way that their range is approximately the same. This is nothing else
but applying a perturbation to the data set, a perturbation which is usually chosen by
trial and error. To overcome this somehow arbitrary approach, note that, as mentioned
in Proposition 3.1, for a composition x and its inverse x−1 it holds that x ⊕ x−1 = n,
the neutral element. This means that we can move by perturbation any composition
to the barycentre of the simplex, in the same way we move real data in real space to
the origin by translation. This property, together with the definition of centre, allows
us to design a strategy to better visualise the structure of the sample. To do that, we
just need to compute the centre g of our sample, as in Definition 5.1, and perturb the
sample by the inverse g−1. This has the effect of moving the centre of a data set to the
barycentre of the simplex, and the sample will gravitate around the barycentre.

This property was first introduced by Mart́ın-Fernández et al. (1999) and used by
Buccianti et al. (1999). An extensive discussion can be found in von Eynatten et al.
(2002), where it is shown that a perturbation transforms straight lines into straight
lines. This allows the inclusion of gridlines and compositional fields in the graphical
representation without the risk of a nonlinear distortion. See Figure 5.1 for an example
of a data set before and after perturbation with the inverse of the closed geometric
mean and the effect on the gridlines.

In the same way in real space one can scale a centred variable dividing it by the
standard deviation, we can scale a (centred) compositional data set X by powering it
with 1/

√

totvar[X]. In this way, we obtain a data set with unit total variance, but
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Figure 5.1: Simulated data set before (left) and after (right) centring.

with the same relative contribution of each log-ratio in the variation array. This is a
significant difference with conventional standardisation: with real vectors, the relative
contributions variable is an artifact of the units of each variable, and most usually should
be ignored; in contrast, in compositional vectors, all parts share the same “units”, and
their relative contribution to total variation is a rich information.

5.4 The biplot: a graphical display

Gabriel (1971) introduced the biplot to represent simultaneously the rows and columns
of any matrix by means of a rank-2 approximation. Aitchison (1997) adapted it for
compositional data and proved it to be a useful exploratory and expository tool. Here
we briefly describe first the philosophy and mathematics of this technique, and then its
interpretation in depth.

5.4.1 Construction of a biplot

Consider the data matrix X with n rows and D columns. Thus, D measurements have
been obtained from each one of n samples. Centre the data set as described in Section
5.3, and find the coefficients Z in clr coordinates (Eq. 4.3). Note that Z is of the same
order as X, i.e. it has n rows and D columns and recall that clr coordinates preserve
distances. Thus, we can apply to Z standard results, and in particular the fact that the
best rank-2 approximation Y to Z in the least squares sense is provided by the singular
value decomposition of Z (Krzanowski, 1988, p. 126-128).

The singular value decomposition of a matrix of coefficients is obtained from the
matrix of eigenvectors L of ZZ′, the matrix of eigenvectors M of Z′Z and the square
roots of the s positive eigenvalues λ1, λ2, . . . , λs of either ZZ′ or Z′Z, which are the
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same. As a result, taking ki =
√

λi, we can write

Z = L











k1 0 · · · 0
0 k2 · · · 0
...

...
. . .

...
0 0 · · · ks











M′,

where s is the rank of Z and the singular values k1, k2, . . . , ks are in descending order of
magnitude. Usually s = D − 1. Both matrices L and M are orthonormal. The rank-2
approximation is then obtained by simply substituting all singular values with index
larger then 2 by zero, thus keeping

Y =
(

l′1 l′2
)

(

k1 0
0 k2

)(

m1

m2

)

=











ℓ11 ℓ21

ℓ12 ℓ22
...

...
ℓ1n ℓ2n











(

k1 0
0 k2

)(

m11 m12 · · · m1D

m21 m22 · · · m2D

)

.

The proportion of variability retained by this approximation is λ1+λ2
Ps

i=1 λi
.

To obtain a biplot, it is first necessary to write Y as the product of two matrices
GH′, where G is an (n × 2) matrix and H is an (D × 2) matrix. There are different
possibilities to obtain such a factorisation, one of which is

Y =











√
n − 1ℓ11

√
n − 1ℓ21√

n − 1ℓ12

√
n − 1ℓ22

...
...√

n − 1ℓ1n

√
n − 1ℓ2n











(

k1m11√
n−1
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
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









(

h1 h2 · · · hD

)

.

The biplot consists simply in representing the n + D vectors gi, i = 1, 2, ..., n, and
hj , j = 1, 2, ..., D, in a plane. The vectors g1, g2, ..., gn are termed the row markers
of Y and correspond to the projections of the n samples on the plane defined by the
first two eigenvectors of ZZ′. The vectors h1, h2, ..., hD are the column markers,
which correspond to the projections of the D clr-parts on the plane defined by the
first two eigenvectors of Z′Z. Both planes can be superposed for a visualisation of the
relationship between samples and parts.
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5.4.2 Interpretation of a compositional biplot

The biplot graphically displays the rank-2 approximation Y to Z given by the singular
value decomposition. A biplot of compositional data consists of

1. an origin O which represents the centre of the compositional data set,

2. a vertex at position hj for each of the D parts, and

3. a case marker at position gi for each of the n samples or cases.

We term the join of O to a vertex hj the ray Ohj and the join of two vertices hj and
hk the link hjhk. These features constitute the basic characteristics of a biplot with
the following main properties for the interpretation of compositional variability.

1. Links and rays provide information on the relative variability in a compositional
data set, as

|hjhk|2 ≈ var

(

ln
xj

xk

)

and |Ohj|2 ≈ var

(

ln
xj

g(x)

)

.

Nevertheless, one has to be careful in interpreting rays, which cannot be identified
neither with var(xj) nor with var(ln xj), as they depend on the full composition
through g(x) and vary when a subcomposition is considered.

2. Links provide information on the correlation of subcompositions: if links jk and
iℓ intersect in M then

cos(jMi) ≈ corr

(

ln
xj

xk

, ln
xi

xℓ

)

.

Furthermore, if the two links are at right angles, then cos(jMi) ≈ 0, and zero
correlation of the two log-ratios can be expected. This is useful in investigation
of subcompositions for possible independence.

3. Subcompositional analysis: The centre O is the centroid (centre of gravity) of the
D vertices 1, 2, . . . , D; ratios are preserved under formation of subcompositions;
it follows that the biplot for any subcomposition is simply formed by selecting the
vertices corresponding to the parts of the subcomposition and taking the centre
of the subcompositional biplot as the centroid of these vertices.

4. Coincident vertices: If vertices j and k coincide, or nearly so, this means that
var(ln(xj/xk)) is zero, or nearly so, so that the ratio xj/xk is constant, or nearly so,
and the two parts, xj and xk can be assumed to be redundant. If the proportion
of variance captured by the biplot is not high enough, two coincident vertices
imply that ln(xj/xk) is orthogonal to the plane of the biplot, and thus this is an
indication of the possible independence of that log-ratio and the two first principal
directions of the singular value decomposition.
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5. Collinear vertices: If a subset of vertices is collinear, it might indicate that the
associated subcomposition has a biplot that is one-dimensional, which might mean
that the subcomposition has one-dimensional variability, i.e. compositions plot
along a compositional line.

It must be clear from the above aspects of interpretation that the fundamental
elements of a compositional biplot are the links, not the rays as in the case of variation
diagrams for unconstrained multivariate data. The complete constellation of links,
by specifying all the relative variances, informs about the compositional covariance
structure and provides hints about subcompositional variability and independence. It
is also obvious that interpretation of the biplot is concerned with its internal geometry
and would, for example, be unaffected by any rotation or indeed mirror-imaging of the
diagram. For an illustration, see Section 5.6.

For some applications of biplots to compositional data in a variety of geological
contexts see (Aitchison, 1990), and for a deeper insight into biplots of compositional
data, with applications in other disciplines and extensions to conditional biplots, see
(Aitchison and Greenacre, 2002).

5.5 Exploratory analysis of coordinates

Either as a result of the preceding descriptive analysis, or due to a priori knowledge of
the problem at hand, we may consider a given sequential binary partition as particularly
interesting. In this case, its associated orthonormal coordinates, being a vector of real
variables, can be treated with the existing battery of conventional descriptive analysis.
If X∗ = h(X) represents the coordinates of the data set –rows contain the coordinates
of an individual observation– then its experimental moments satisfy

ȳ∗ = h(g) = Ψ · clr(g) = Ψ · ln(g)

Sy = −Ψ · T∗ · Ψ′

with Ψ the matrix whose rows contain the clr coefficients of the orthonormal basis
chosen (see Section 4.4 for its construction); g the centre of the dataset as defined in
Definition 5.1, and T∗ the normalised variation matrix as introduced in Definition 5.2.

There is a graphical representation, with the specific aim of representing a system of
coordinates based on a sequential binary partition: the CoDa- or balance-dendrogram
(Egozcue and Pawlowsky-Glahn, 2006; Pawlowsky-Glahn and Egozcue, 2006; Thió-
Henestrosa et al., 2007). A balance-dendrogram is the joint representation of the fol-
lowing elements:

1. a sequential binary partition, in the form of a tree structure;

2. the sample mean and variance of each ilr coordinate;
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3. a box-plot, summarising the order statistics of each ilr coordinate.

Each coordinate is represented in a horizontal axis, which limits correspond to a certain
range (the same for every coordinate). The vertical bar going up from each one of these
coordinate axes represents the variance of that specific coordinate, and the contact point
is the coordinate mean. Figure 5.2 shows these elements in an illustrative example.

Given that the range of each coordinate is symmetric (in Figure 5.2 it goes from
−3 to +3), the box plots closer to one part (or group) indicate that part (or group) is
more abundant. Thus, in Figure 5.2, SiO2 is slightly more abundant that Al2O3, there
is more FeO than Fe2O3, and much more structural oxides (SiO2 and Al2O3) than the
rest. Another feature easily read from a balance-dendrogram is symmetry: it can be
assessed both by comparison between the several quantile boxes, and looking at the
difference between the median (marked as “Q2” in Figure 5.2 right) and the mean.

In fact, a balance-dendrogram contains information on the marginal distribution of
each coordinate. It can potentially contain any other representation of these marginals,
not only box-plots: one could use the horizontal axes to represent, e.g., histograms or
kernel density estimations, or even the sample itself. On the other side, a balance-
dendrogram does not contain any information on the relationship between coordinates:
this can be approximately inferred from the biplot or just computing the correlation
matrix of the coordinates.

5.6 Illustration

We are going to use, both for illustration and for the exercises, the data set X given
in table 5.1. They correspond to 17 samples of chemical analysis of rocks from Kilauea
Iki lava lake, Hawaii, published by Richter and Moore (1966) and cited by Rollinson
(1995).

Originally, 14 parts had been registered, but H2O
+ and H2O

− have been omitted
because of the large amount of zeros. CO2 has been kept in the table, to call attention
upon parts with some zeros, but has been omitted from the study precisely because of
the zeros. This is the strategy to follow if the part is not essential in the characterisation
of the phenomenon under study. If the part is essential and the proportion of zeros is
high, then we are dealing with two populations, one characterised by zeros in that
component and the other by non-zero values. If the part is essential and the proportion
of zeros is small, then we can look for input techniques, as explained in the beginning
of this chapter.

The centre of this data set is

g = (48.57, 2.35, 11.23, 1.84, 9.91, 0.18, 13.74, 9.65, 1.82, 0.48, 0.22) ,

the total variance is totvar[X] = 0.3275 and the normalised variation matrix T∗ is given
in Table 5.2.
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Figure 5.2: Illustration of elements included in a balance-dendrogram. The left subfigure represents
a full dendrogram, and the right figure is a zoomed part, corresponding to the balance of (FeO,Fe2O3)
against TiO2.

The biplot (Fig. 5.3), shows an essentially two dimensional pattern of variability,
two sets of parts that cluster together, A = [TiO2, Al2O3, CaO, Na2O, P2O5] and B =
[SiO2, FeO, MnO], and a set of one dimensional relationships between parts.

The two dimensional pattern of variability is supported by the fact that the first two
axes of the biplot reproduce about 90% of the total variance, as captured in the scree
plot in Fig. 5.3, left. The orthogonality of the link between Fe2O3 and FeO (i.e., the
oxidation state) with the link between MgO and any of the parts in set A might help
in finding an explanation for this behaviour and in decomposing the global pattern into
two independent processes.

Concerning the two sets of parts we can observe short links between them and, at
the same time, that the variances of the corresponding log-ratios (see the normalised
variation matrix T∗, Table 5.2) are very close to zero. Consequently, we can say that
they are essentially redundant, and that some of them could be either grouped to a
single part or simply omitted. In both cases the dimensionality of the problem would
be reduced.

Another aspect to be considered is the diverse patterns of one-dimensional variability
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Table 5.1: Chemical analysis of rocks from Kilauea Iki lava lake, Hawaii

SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 CO2

48.29 2.33 11.48 1.59 10.03 0.18 13.58 9.85 1.90 0.44 0.23 0.01
48.83 2.47 12.38 2.15 9.41 0.17 11.08 10.64 2.02 0.47 0.24 0.00
45.61 1.70 8.33 2.12 10.02 0.17 23.06 6.98 1.33 0.32 0.16 0.00
45.50 1.54 8.17 1.60 10.44 0.17 23.87 6.79 1.28 0.31 0.15 0.00
49.27 3.30 12.10 1.77 9.89 0.17 10.46 9.65 2.25 0.65 0.30 0.00
46.53 1.99 9.49 2.16 9.79 0.18 19.28 8.18 1.54 0.38 0.18 0.11
48.12 2.34 11.43 2.26 9.46 0.18 13.65 9.87 1.89 0.46 0.22 0.04
47.93 2.32 11.18 2.46 9.36 0.18 14.33 9.64 1.86 0.45 0.21 0.02
46.96 2.01 9.90 2.13 9.72 0.18 18.31 8.58 1.58 0.37 0.19 0.00
49.16 2.73 12.54 1.83 10.02 0.18 10.05 10.55 2.09 0.56 0.26 0.00
48.41 2.47 11.80 2.81 8.91 0.18 12.52 10.18 1.93 0.48 0.23 0.00
47.90 2.24 11.17 2.41 9.36 0.18 14.64 9.58 1.82 0.41 0.21 0.01
48.45 2.35 11.64 1.04 10.37 0.18 13.23 10.13 1.89 0.45 0.23 0.00
48.98 2.48 12.05 1.39 10.17 0.18 11.18 10.83 1.73 0.80 0.24 0.01
48.74 2.44 11.60 1.38 10.18 0.18 12.35 10.45 1.67 0.79 0.23 0.01
49.61 3.03 12.91 1.60 9.68 0.17 8.84 10.96 2.24 0.55 0.27 0.01
49.20 2.50 12.32 1.26 10.13 0.18 10.51 11.05 2.02 0.48 0.23 0.01

that can be observed. Examples that can be visualised in a ternary diagram are Fe2O3,
K2O and any of the parts in set A, or MgO with any of the parts in set A and any of
the parts in set B. Let us select one of those subcompositions, e.g. Fe2O3, K2O and
Na2O. After closure, the samples plot in a ternary diagram as shown in Figure 5.4 and
we recognise the expected trend and two outliers corresponding to samples 14 and 15,
which require further explanation. Regarding the trend itself, notice that it is in fact a
line of isoproportion Na2O/K2O: thus we can conclude that the ratio of these two parts
is independent of the amount of Fe2O3.

As a last step, we compute the conventional descriptive statistics of the orthonormal
coordinates in a specific reference system (either a priori chosen or derived from the
previous steps). In this case, due to our knowledge of the typical geochemistry and
mineralogy of basaltic rocks, we choose a priori the set of balances of Table 5.3, where
the resulting balance will be interpreted as

1. an oxidation state proxy (Fe3+ against Fe2+);

2. silica saturation proxy (when Si is lacking, Al takes its place);

3. distribution within heavy minerals (rutile or apatite?);

4. importance of heavy minerals relative to silicates;

5. distribution within plagioclase (albite or anortite?);
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Table 5.2: Normalised variation matrix of data given in table 5.1. For simplicity, only the upper
triangle is represented, omitting the first column and last row.

var( 1
√

2
ln xi

xj
) TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5

SiO2 0.012 0.006 0.036 0.001 0.001 0.046 0.007 0.009 0.029 0.011
TiO2 0.003 0.058 0.019 0.016 0.103 0.005 0.002 0.015 0.000

Al2O3 0.050 0.011 0.008 0.084 0.000 0.002 0.017 0.002
Fe2O3 0.044 0.035 0.053 0.054 0.050 0.093 0.059

FeO 0.001 0.038 0.012 0.015 0.034 0.017
MnO 0.040 0.009 0.012 0.033 0.015
MgO 0.086 0.092 0.130 0.100
CaO 0.003 0.016 0.004

Na2O 0.024 0.002
K2O 0.014

Table 5.3: A possible sequential binary partition for the data set of table 5.1.

balance SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5

v1 0 0 0 +1 -1 0 0 0 0 0 0
v2 +1 0 -1 0 0 0 0 0 0 0 0
v3 0 +1 0 0 0 0 0 0 0 0 -1
v4 +1 -1 +1 0 0 0 0 0 0 0 -1
v5 0 0 0 0 0 0 0 +1 -1 0 0
v6 0 0 0 0 0 0 0 +1 +1 -1 0
v7 0 0 0 0 0 +1 -1 0 0 0 0
v8 0 0 0 +1 +1 -1 -1 0 0 0 0
v9 0 0 0 +1 +1 +1 +1 -1 -1 -1 0

v10 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 +1

6. distribution within feldspar (K-feldspar or plagioclase?);

7. distribution within mafic non-ferric minerals;

8. distribution within mafic minerals (ferric vs. non-ferric);

9. importance of mafic minerals against feldspar;

10. importance of cation oxides (those filling the crystalline structure of minerals)
against frame oxides (those forming that structure, mainly Al and Si).

One should be aware that such an interpretation is totally problem-driven: if we
were working with sedimentary rocks, it would have no sense to split MgO and CaO (as
they would mainly occur in limestones and associated lithologies), or to group Na2O
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Figure 5.3: Biplot of data of Table 5.1 (right), and scree plot of the variances of all principal
components (left), with indication of cumulative explained variance.

with CaO (as they would probably come from different rock types, e.g. siliciclastic
against carbonate).

Using the sequential binary partition given in Table 5.3, Figure 5.5 represents the
balance-dendrogram of the sample, within the range (−3, +3). This range translates for
two part compositions to proportions of (1.4, 98.6)%; i.e. if we look at the balance MgO-
MnO the variance bar is placed at the lower extreme of the balance axis, which implies
that in this subcomposition MgO represents in average more than 98%, and MnO less
than 2%. Looking at the lengths of the several variance bars, one easily finds that the
balances P2O5-TiO2 and SiO2-Al2O3 are almost constant, as their bars are very short
and their box-plots extremely narrow. Again, the balance between the subcompositions
(P2O5, TiO2) vs. (SiO2, Al2O3) does not display any box-plot, meaning that it is above
+3 (thus, the second group of parts represents more than 98% with respect to the
first group). The distribution between K2O, Na2O and CaO tells us that Na2O and
CaO keep a quite constant ratio (thus, we should interpret that there are no strong
variations in the plagioclase composition), and the ratio of these two against K2O is
also fairly constant, with the exception of some values below the first quartile (probably,
a single value with an particularly high K2O content). The other balances are well
equilibrated (in particular, see how centred is the proxy balance between feldspar and
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Figure 5.4: Plot of subcomposition (Fe2O3,K2O,Na2O). Left: before centring. Right: after centring.

mafic minerals), all with moderate dispersions.

0.
00

0.
05

0.
10

0.
15

0.
20

K
2O

N
a2

O

C
aO

M
gO

M
nO F
eO

F
e2

O
3

P
2O

5

T
iO

2

A
l2

O
3

S
iO

2

Figure 5.5: Balance-dendrogram of data from Table 5.1 using the balances of Table 5.3.

Once the marginal empirical distribution of the balances have been analysed, we can
use the biplot to explore their relations (Figure 5.6), and the conventional covariance
or correlation matrices (Table 5.4). From these, we can see, for instance:

• The constant behaviour of v3 (balance TiO2-P2O5), with a variance below 10−4,
and in a lesser degree, of v5 (anortite-albite relation, or balance CaO-Na2O).

• The orthogonality of the pairs of rays v1-v2, v1-v4, v1-v7, and v6-v8, suggests
the lack of correlation of their respective balances, confirmed by Table 5.4, where
correlations of less than ±0.3 are reported. In particular, the pair v6-v8 has a
correlation of −0.029. These facts would imply that silica saturation (v2), the
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Figure 5.6: Biplot of data of table 5.1 expressed in the balance coordinate system of Table 5.3
(right), and scree plot of the variances of all principal components (left), with indication of cumulative
explained variance. Compare with Figure 5.3, in particular: the scree plot, the configuration of data
points, and the links between the variables related to balances v1, v2, v3, v5 and v7.

presence of heavy minerals (v4) and the MnO-MgO balance (v7) are uncorrelated
with the oxidation state (v1); and that the type of feldspars (v6) is unrelated to
the type of mafic minerals (v8).

• The balances v9 and v10 are opposite, and their correlation is −0.936, imply-
ing that the ratio mafic oxides/feldspar oxides is high when the ratio Silica-
Alumina/cation oxides is low, i.e. mafics are poorer in Silica and Alumina.

A final comment regarding balance descriptive statistics: since the balances are
chosen due to their interpretability, we are no more just “describing” patterns here.
Balance statistics represent a step further towards modelling: all our conclusions in
these last three points heavily depend on the preliminary interpretation (=“model”) of
the computed balances.

5.7 Exercises

Exercise 5.1. This exercise pretends to illustrate the problems of classical statistics if
applied to compositional data. Using the data given in Table 5.1, compute the classical



5.7. Exercises 47

Table 5.4: Covariance (lower triangle) and correlation (upper triangle) matrices of balances

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
v1 0.047 0.120 0.341 0.111 -0.283 0.358 -0.212 0.557 0.423 -0.387
v2 0.002 0.006 -0.125 0.788 0.077 0.234 -0.979 -0.695 0.920 -0.899
v3 0.002 -0.000 0.000 -0.345 -0.380 0.018 0.181 0.423 -0.091 0.141
v4 0.003 0.007 -0.001 0.012 0.461 0.365 -0.832 -0.663 0.821 -0.882
v5 -0.004 0.000 -0.000 0.003 0.003 -0.450 -0.087 -0.385 -0.029 -0.275
v6 0.013 0.003 0.000 0.007 -0.004 0.027 -0.328 -0.029 0.505 -0.243
v7 -0.009 -0.016 0.001 -0.019 -0.001 -0.011 0.042 0.668 -0.961 0.936
v8 0.018 -0.008 0.001 -0.011 -0.003 -0.001 0.021 0.023 -0.483 0.516
v9 0.032 0.025 -0.001 0.031 -0.001 0.029 -0.069 -0.026 0.123 -0.936

v10 -0.015 -0.013 0.001 -0.017 -0.003 -0.007 0.035 0.014 -0.059 0.032

correlation coefficients between the following pairs of parts: (MnO vs. CaO), (FeO vs.
Na2O), (MgO vs. FeO) and (MgO vs. Fe2O3). Now ignore the structural oxides Al2O3

and SiO2 from the data set, reclose the remaining variables, and recompute the same
correlation coefficients as above. Compare the results. Compare the correlation matrix
between the feldspar-constituent parts (CaO,Na2O,K2O), as obtained from the original
data set, and after reclosing this 3-part subcomposition.

Exercise 5.2. For the data given in Table 2.1 compute and plot the centre with the
samples in a ternary diagram. Compute the total variance and the variation matrix.

Exercise 5.3. Perturb the data given in table 2.1 with the inverse of the centre. Com-
pute the centre of the perturbed data set and plot it with the samples in a ternary
diagram. Compute the total variance and the variation matrix. Compare your results
numerically and graphically with those obtained in exercise 5.2.

Exercise 5.4. Make a biplot of the data given in Table 2.1 and give an interpretation.

Exercise 5.5. Figure 5.3 shows the biplot of the data given in Table 5.1. How would
you interpret the different patterns that can be observed in it?

Exercise 5.6. Select 3-part subcompositions that behave in a particular way in Figure
5.3 and plot them in a ternary diagram. Do they reproduce properties mentioned in
the previous description?

Exercise 5.7. Do a scatter plot of the log-ratios

1√
2

ln
K2O

MgO
against

1√
2

ln
Fe2O3

FeO
,

identifying each point. Compare with the biplot. Compute the total variance of the
subcomposition (K2O,MgO,Fe2O3,FeO) and compare it with the total variance of the
full data set.
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Exercise 5.8. How would you recast the data in table 5.1 from mass proportion of
oxides (as they are) to molar proportions? You may need the following molar weights.
Any idea of how to do that with a perturbation?

SiO2 TiO2 Al2O3 Fe2O3 FeO MnO
60.085 79.899 101.961 159.692 71.846 70.937

MgO CaO Na2O K2O P2O5

40.304 56.079 61.979 94.195 141.945

Exercise 5.9. Re-do all the descriptive analysis (and the related exercises) with the
Kilauea data set expressed in molar proportions. Compare the results.

Exercise 5.10. Compute the vector of arithmetic means of the ilr transformed data
from table 2.1. Apply the ilr−1 backtransformation and compare it with the centre.

Exercise 5.11. Take the parts of the compositions in table 2.1 in a different order.
Compute the vector of arithmetic means of the ilr transformed sample. Apply the ilr−1

backtransformation. Compare the result with the previous one.

Exercise 5.12. Centre the data set of table 2.1. Compute the vector of arithmetic
means of the ilr transformed data. What do you obtain?

Exercise 5.13. Compute the covariance matrix of the ilr transformed data set of table
2.1 before and after perturbation with the inverse of the centre. Compare both matrices.



Chapter 6

Distributions on the simplex

The usual way to pursue any statistical analysis after an exhaustive exploratory analysis
consists in assuming and testing distributional assumptions for our random phenomena.
This can be easily done for compositional data, as the linear vector space structure of
the simplex allows us to express observations with respect to an orthonormal basis, a
property that guarantees the proper application of standard statistical methods. The
only thing that has to be done is to perform any standard analysis on orthonormal
coefficients and to interpret the results in terms of coefficients of the orthonormal basis.
Once obtained, the inverse can be used to get the same results in terms of the canonical
basis of R

D (i.e. as compositions summing up to a constant value). The justification of
this approach lies in the fact that standard mathematical statistics relies on real analysis,
and real analysis is performed on the coefficients with respect to an orthonormal basis
in a linear vector space, as discussed by Pawlowsky-Glahn (2003).

There are other ways to justify this approach coming from the side of measure theory
and the definition of density function as the Radon-Nikodým derivative of a probability
measure (Eaton, 1983), but they would divert us too far from practical applications.

Given that most multivariate techniques rely on the assumption of multivariate
normality, we will concentrate on the expression of this distribution in the context of
random compositions and address briefly other possibilities.

6.1 The normal distribution on SD

Definition 6.1. Given a random vector x which sample space is SD, we say that x fol-
lows a normal distribution on SD if, and only if, the vector of orthonormal coordinates,
x∗ = h(x), follows a multivariate normal distribution on R

D−1.

To characterise a multivariate normal distribution we need to know its parameters,
i.e. the vector of expected values µ and the covariance matrix Σ. In practice, they
are seldom, if ever, known, and have to be estimated from the sample. Here the maxi-
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mum likelihood estimates will be used, which are the vector of arithmetic means x̄∗ for
the vector of expected values, and the sample covariance matrix Sx∗ with the sample
size n as divisor. Remember that, in the case of compositional data, the estimates
are computed using the orthonormal coordinates x∗ of the data and not the original
measurements.

As we have considered coordinates x∗, we will obtain results in terms of coefficients
of x∗ coordinates. To obtain them in terms of the canonical basis of R

D we have
to backtransform whatever we compute by using the inverse transformation h−1(x∗).
In particular, we can backtransform the arithmetic mean x̄∗, which is an adequate
measure of central tendency for data which follow reasonably well a multivariate normal
distribution. But h−1(x̄∗) = g, the centre of a compositional data set introduced in
Definition 5.1, which is an unbiased, minimum variance estimator of the expected value
of a random composition (Pawlowsky-Glahn and Egozcue, 2002). Also, as stated in
Aitchison (2002), g is an estimate of C [exp(E[ln(x)])], which is the theoretical definition
of the closed geometric mean, thus justifying its use.

6.2 Other distributions

Many other distributions on the simplex have been defined (using on SD the classical
Lebesgue measure on R

D), like e.g. the additive logistic skew normal, the Dirichlet
and its extensions, the multivariate normal based on Box-Cox transformations, among
others. Some of them have been recently analysed with respect to the linear vector
space structure of the simplex (Mateu-Figueras, 2003). This structure has important
implications, as the expression of the corresponding density differs from standard for-
mulae when expressed in terms of the metric of the simplex and its associated Lebesgue
measure (Pawlowsky-Glahn, 2003). As a result, appealing invariance properties appear:
for instance, a normal density on the real line does not change its shape by transla-
tion, and thus a normal density in the simplex is also invariant under perturbation;
this property is not obtained if one works with the classical Lebesgue measure on R

D.
These densities and the associated properties shall be addressed in future extensions of
this short course.

6.3 Tests of normality on SD

Testing distributional assumptions of normality on SD is equivalent to test multivariate
normality of h transformed compositions. Thus, interest lies in the following test of
hypothesis:

H0: the sample comes from a normal distribution on SD,

H1: the sample comes not from a normal distribution on SD,
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which is equivalent to

H0: the sample of h coordinates comes from a multivariate normal distribution,

H1: the sample of h coordinates comes not from a multivariate normal distribution.

Out of the large number of published tests, for x∗ ∈ R
D−1, Aitchison selected the

Anderson-Darling, Cramer-von Mises, and Watson forms for testing hypothesis on sam-
ples coming from a uniform distribution. We repeat them here for the sake of com-
pleteness, but only in a synthetic form. For clarity we follow the approach used in
(Pawlowsky-Glahn and Buccianti, 2002) and present each case separately; in (Aitchi-
son, 1986) an integrated approach can be found, in which the orthonormal basis selected
for the analysis comes from the singular value decomposition of the data set.

The idea behind the approach is to compute statistics which under the initial hy-
pothesis should follow a uniform distribution in each of the following three cases:

1. all (D − 1) marginal, univariate distributions,

2. all 1
2
(D − 1)(D − 2) bivariate angle distributions,

3. the (D − 1)-dimensional radius distribution,

and then use mentioned tests.
Another approach is implemented in the R “compositions” library (van den Boogaart

and Tolosana-Delgado, 2007), where all pair-wise log-ratios are checked for normality,
in the fashion of the variation matrix. This gives 1

2
(D − 1)(D − 2) tests of univariate

normality: for the hypothesis H0 to hold, all marginal distributions must be also normal.
This condition is thus necessary, but not sufficient (although it is a good indication).
Here we will not explain the details of this approach: they are equivalent to marginal
univariate distribution tests.

6.3.1 Marginal univariate distributions

We are interested in the distribution of each one of the components of h(x) = x∗ ∈ R
D−1,

called the marginal distributions. For the i-th of those variables, the observations are
given by 〈x, ei〉a, which explicit expression can be found in Equation 4.7. To perform
mentioned tests, proceed as follows:

1. Compute the maximum likelihood estimates of the expected value and the vari-
ance:

µ̂i =
1

n

n
∑

r=1

x∗
ri, σ̂2

i =
1

n

n
∑

r=1

(x∗
ri − µ̄i)

2.
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Table 6.1: Critical values for marginal test statistics.

Significance level (%) 10 5 2.5 1
Anderson-Darling: Qa 0.656 0.787 0.918 1.092
Cramer-von Mises: Qc 0.104 0.126 0.148 0.178
Watson: Qw 0.096 0.116 0.136 0.163

2. Obtain from the corresponding tables or using a computer built-in function the
values

Φ

(

x∗
ri − µ̂i

σ̂i

)

= zr, r = 1, 2, ..., n,

where Φ(.) is the N (0; 1) cumulative distribution function.

3. Rearrange the values zr in ascending order of magnitude to obtain the ordered
values z(r).

4. Compute the Anderson-Darling statistic for marginal univariate distributions:

Qa =

(

25

n2
− 4

n
− 1

)

(

1

n

n
∑

r=1

(2r − 1)
[

ln z(r) + ln(1 − z(n+1−r))
]

+ n

)

.

5. Compute the Cramer-von Mises statistic for marginal univariate distributions

Qc =

(

n
∑

r=1

(

z(r) −
2r − 1

2n

)2

+
1

12n

)

(

2n + 1

2n

)

.

6. Compute the Watson statistic for marginal univariate distributions

Qw = Qc −
(

2n + 1

2

)

(

1

n

n
∑

r=1

z(r) −
1

2

)2

.

7. Compare the results with the critical values in table 6.1. The null hypothesis
will be rejected whenever the test statistic lies in the critical region for a given
significance level, i.e. it has a value that is larger than the value given in the table.

The underlying idea is that if the observations are indeed normally distributed, then
the z(r) should be approximately the order statistics of a uniform distribution over the
interval (0, 1). The tests make such comparisons, making due allowance for the fact that
the mean and the variance are estimated. Note that to follow the van den Boogaart and
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Tolosana-Delgado (2007) approach, one should simply apply this schema to all pair-wise
log-ratios, y = log(xi/xj), with i < j, instead to the x∗ coordinates of the observations.

A visual representation of each test can be given in the form of a plot in the unit
square of the z(r) against the associated order statistic (2r − 1)/(2n), r = 1, 2, ..., n, of
the uniform distribution (a PP plot). Conformity with normality on SD corresponds to
a pattern of points along the diagonal of the square.

6.3.2 Bivariate angle distribution

The next step consists in analyzing the bivariate behavior of the ilr coordinates. For each
pair of indices (i, j), with i < j, we can form a set of bivariate observations (x∗

ri, x
∗
rj),

r = 1, 2, ..., n. The test approach here is based on the following idea: if (ui, uj) is
distributed as N 2(0; I2), called a circular normal distribution, then the radian angle
between the vector from (0, 0) to (ui, uj) and the u1-axis is distributed uniformly over
the interval (0, 2π). Since any bivariate normal distribution can be reduced to a circular
normal distribution by a suitable transformation, we can apply such a transformation
to the bivariate observations and ask if the hypothesis of the resulting angles following
a uniform distribution can be accepted. Proceed as follows:

1. For each pair of indices (i, j), with i < j, compute the maximum likelihood
estimates

(

µ̂i

µ̂j

)

=







1
n

n
∑

r=1

x∗
ri

1
n

n
∑

r=1

x∗
rj






,

(

σ̂2
i σ̂ij

σ̂ij σ̂2
j

)

=







1
n

n
∑

r=1

(x∗
ri − x̄∗

i )
2 1

n

n
∑

r=1

(x∗
ri − x̄∗

i )(x
∗
rj − x̄∗

j )

1
n

n
∑

r=1

(x∗
ri − x̄∗

i )(x
∗
rj − x̄∗

j )
1
n

n
∑

r=1

(x∗
rj − x̄∗

j )
2






.

2. Compute, for r = 1, 2, ..., n,

ur =
1

√

σ̂2
i σ̂

2
j − σ̂2

ij

[

(x∗
ri − µ̂i)σ̂j − (x∗

rj − µ̂j)
σ̂ij

σ̂j

]

,

vr = (x∗
rj − µ̂j)/σ̂j .

3. Compute the radian angles θ̂r required to rotate the ur-axis anticlockwise about
the origin to reach the points (ur, vr). If arctan(t) denotes the angle between −1

2
π

and 1
2
π whose tangent is t, then

θ̂r = arctan

(

vr

ur
+

(1 − sgn(ur))π

2
+

(1 + sgn(ur)) (1 − sgn(vr)) π

4

)

.
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Table 6.2: Critical values for the bivariate angle test statistics.

Significance level (%) 10 5 2.5 1
Anderson-Darling: Qa 1.933 2.492 3.070 3.857
Cramer-von Mises: Qc 0.347 0.461 0.581 0.743
Watson: Qw 0.152 0.187 0.221 0.267

4. Rearrange the values of θ̂r/(2π) in ascending order of magnitude to obtain the
ordered values z(r).

5. Compute the Anderson-Darling statistic for bivariate angle distributions:

Qa = −1

n

n
∑

r=1

(2r − 1)
[

ln z(r) + ln(1 − z(n+1−r))
]

− n.

6. Compute the Cramer-von Mises statistic for bivariate angle distributions

Qc =

(

n
∑

r=1

(

z(r) −
2r − 1

2n

)2

− 3.8

12n
+

0.6

n2

)

(

n + 1

n

)

.

7. Compute the Watson statistic for bivariate angle distributions

Qw =





n
∑

r=1

(

z(r) −
2r − 1

2n

)2

− 0.2

12n
+

0.1

n2
− n

(

1

n

n
∑

r=1

z(r) −
1

2

)2




(

n + 0.8

n

)

.

8. Compare the results with the critical values in Table 6.2. The null hypothesis
will be rejected whenever the test statistic lies in the critical region for a given
significance level, i.e. it has a value that is larger than the value given in the table.

The same representation as mentioned in the previous section can be used for visual
appraisal of conformity with the hypothesis tested.

6.3.3 Radius test

To perform an overall test of multivariate normality, the radius test is going to be used.
The basis for it is that, under the assumption of multivariate normality of the orthonor-
mal coordinates, x∗

r , the radii−or squared deviations from the mean−are approximately
distributed as χ2(D−1); using the cumulative function of this distribution we can obtain
again values that should follow a uniform distribution. The steps involved are:
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Table 6.3: Critical values for the radius test statistics.

Significance level (%) 10 5 2.5 1
Anderson-Darling: Qa 1.933 2.492 3.070 3.857
Cramer-von Mises: Qc 0.347 0.461 0.581 0.743
Watson: Qw 0.152 0.187 0.221 0.267

1. Compute the maximum likelihood estimates for the vector of expected values and
for the covariance matrix, as described in the previous tests.

2. Compute the radii ur = (x∗
r − µ̂)′Σ̂−1(x∗

r − µ̂), r = 1, 2, ..., n.

3. Compute zr = F (ur), r = 1, 2, ..., n, where F is the distribution function of the
χ2(D − 1) distribution.

4. Rearrange the values of zr in ascending order of magnitude to obtain the ordered
values z(r).

5. Compute the Anderson-Darling statistic for radius distributions:

Qa = −1

n

n
∑

r=1

(2r − 1)
[

ln z(r) + ln(1 − z(n+1−r))
]

− n.

6. Compute the Cramer-von Mises statistic for radius distributions

Qc =

(

n
∑

r=1

(

z(r) −
2r − 1

2n

)2

− 3.8

12n
+

0.6

n2

)

(

n + 1

n

)

.

7. Compute the Watson statistic for radius distributions

Qw =





n
∑

r=1

(

z(r) −
2r − 1

2n

)2

− 0.2

12n
+

0.1

n2
− n

(

1

n

n
∑

r=1

z(r) −
1

2

)2




(

n + 0.8

n

)

.

8. Compare the results with the critical values in table 6.3. The null hypothesis
will be rejected whenever the test statistic lies in the critical region for a given
significance level, i.e. it has a value that is larger than the value given in the table.

Use the same representation described before to assess visually normality on SD.



56 Chapter 6. Distributions on the simplex

6.4 Exercises

Exercise 6.1. Test the hypothesis of normality of the marginals of the ilr transformed
sample of table 2.1.

Exercise 6.2. Test the bivariate normality of each variable pair (x∗
i , x

∗
j), i < j, of the

ilr transformed sample of table 2.1.

Exercise 6.3. Test the variables of the ilr transformed sample of table 2.1 for joint
normality.



Chapter 7

Statistical inference

7.1 Testing hypothesis about two groups

When a sample has been divided into two or more groups, interest may lie in finding
out whether there is a real difference between those groups and, if it is the case, whether
it is due to differences in the centre, in the covariance structure, or in both. Consider
for simplicity two samples of size n1 and n2, which are realisation of two random com-
positions x1 and x2, each with an normal distribution on the simplex. Consider the
following hypothesis:

1. there is no difference between both groups;

2. the covariance structure is the same, but centres are different;

3. the centres are the same, but the covariance structure is different;

4. the groups differ in their centres and in their covariance structure.

Note that if we accept the first hypothesis, it makes no sense to test the second or the
third; the same happens for the second with respect to the third, although these two
are exchangeable. This can be considered as a lattice structure in which we go from the
bottom or lowest level to the top or highest level until we accept one hypothesis. At
that point it makes no sense to test further hypothesis and it is advisable to stop.

To perform tests on these hypothesis, we are going to use coordinates x∗ and to
assume they follow each a multivariate normal distribution. For the parameters of the
two multivariate normal distributions, the four hypothesis are expressed, in the same
order as above, as follows:

1. the vectors of expected values and the covariance matrices are the same:
µ1 = µ2 and Σ1 = Σ2;
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2. the covariance matrices are the same, but not the vectors of expected values:
µ1 6= µ2 and Σ1 = Σ2;

3. the vectors of expected values are the same, but not the covariance matrices:
µ1 = µ2 and Σ1 6= Σ2;

4. neither the vectors of expected values, nor the covariance matrices are the same:
µ1 6= µ2 and Σ1 6= Σ2.

The last hypothesis is called the model, and the other hypothesis will be confronted
with it, to see which one is more plausible. In other words, for each test, the model will
be the alternative hypothesis H1.

For each single case we can use either unbiased or maximum likelihood estimates of
the parameters. Under assumptions of multivariate normality, they are identical for the
expected values and have a different divisor of the covariance matrix (the sample size
n in the maximum likelihood approach, and n− 1 in the unbiased case). Here develop-
ments will be presented in terms of maximum likelihood estimates, as those have been
used in the previous chapter. Note that estimators change under each of the possible
hypothesis, so each case will be presented separately. The following developments are
based on Aitchison (1986, p. 153-158) and Krzanowski (1988, p. 323-329), although
for a complete theoretical proof see Mardia et al. (1979, section 5.5.3). The primary
computations from the coordinates, h(x1) = x∗

1, of the n1 samples in one group, and
h(x2) = x∗

2, of the n2 samples in the other group, are

1. the separate sample estimates

(a) of the vectors of expected values:

µ̂1 =
1

n1

n1
∑

r=1

x∗
1r, µ̂2 =

1

n2

n2
∑

s=1

x∗
2s,

(b) of the covariance matrices:

Σ̂1 =
1

n1

n1
∑

r=1

(x∗
1r − µ̂1)(x

∗
1r − µ̂1)

′,

Σ̂2 =
1

n2

n2
∑

s=1

(x∗
2s − µ̂2)(x

∗
2s − µ̂2)

′,

2. the pooled covariance matrix estimate:

Σ̂p =
n1Σ̂1 + n2Σ̂2

n1 + n2
, (7.1)
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3. the combined sample estimates

µ̂c =
n1µ̂1 + n2µ̂2

n1 + n2
, (7.2)

Σ̂c = Σ̂p +
n1n2(µ̂1 − µ̂2)(µ̂1 − µ̂2)

′

(n1 + n2)2
. (7.3)

(7.4)

To test the different hypothesis, we will use the generalised likelihood ratio test,
which is based on the following principles: consider the maximised likelihood function
for data x∗ under the null hypothesis, L0(x

∗) and under the model with no restrictions
(case 4), Lm(x∗). The test statistic is then R(x∗) = Lm(x∗)/L0(x

∗), and the larger the
value is, the more critical or resistant to accept the null hypothesis we shall be. In some
cases the exact distribution of this cases is known. In those cases where it is not known,
we shall use Wilks asymptotic approximation: under the null hypothesis, which places
c constraints on the parameters, the test statistic Q(x∗) = 2 ln(R(x∗)) is distributed
approximately as χ2(c). For the cases to be studied, the approximate generalised ratio
test statistic then takes the form:

Q0m(x∗) = n1 ln

(

|Σ̂10|
|Σ̂1m|

)

+ n2 ln

(

|Σ̂20|
|Σ̂2m|

)

.

1. Equality of centres and covariance structure: The null hypothesis is that µ1 = µ2

and Σ1 = Σ2, thus we need the estimates of the common parameters µ = µ1 = µ2

and Σ = Σ1 = Σ2, which are, respectively, µ̂c for µ and Σ̂c for Σ under the null
hypothesis, and µ̂i for µi and Σ̂i for Σi, i = 1, 2, under the model, resulting in a
test statistic

Q1vs4(x
∗) = n1 ln

(

|Σ̂c|
|Σ̂1|

)

+ n2 ln

(

|Σ̂c|
|Σ̂2|

)

∼ χ2

(

1

2
D(D − 1)

)

,

to be compared against the upper percentage points of the χ2
(

1
2
D(D − 1)

)

dis-
tribution.

2. Equality of covariance structure with different centres: The null hypothesis is that
µ1 6= µ2 and Σ1 = Σ2, thus we need the estimates of µ1, µ2 and of the common
covariance matrix Σ = Σ1 = Σ2, which are Σ̂p for Σ under the null hypothesis

and Σ̂i for Σi, i = 1, 2, under the model, resulting in a test statistic

Q2vs4(x
∗) = n1 ln

(

|Σ̂p|
|Σ̂1|

)

+ n2 ln

(

|Σ̂p|
|Σ̂2|

)

∼ χ2

(

1

2
(D − 1)(D − 2)

)

.
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3. Equality of centres with different covariance structure: The null hypothesis is
that µ1 = µ2 and Σ1 6= Σ2, thus we need the estimates of the common centre
µ = µ1 = µ2 and of the covariance matrices Σ1 and Σ2. In this case no explicit
form for the maximum likelihood estimates exists. Hence the need for a simple
iterative method which requires the following steps:

(a) Set the initial value Σ̂ih = Σ̂i, i = 1, 2;

(b) compute the common mean, weighted by the variance of each group:

µ̂h = (n1Σ̂
−1
1h + n2Σ̂

−1
2h )−1(n1Σ̂

−1
1h µ̂1 + n2Σ̂

−1
2h µ̂2) ;

(c) compute the variances of each group with respect to the common mean:

Σ̂ih = Σ̂i + (µ̂i − µ̂h)(µ̂i − µ̂h)
′ , i = 1, 2 ;

(d) Repeat steps 2 and 3 until convergence.

Thus we have Σ̂i0 for Σi, i = 1, 2, under the null hypothesis and Σ̂i for Σi, i = 1, 2,
under the model, resulting in a test statistic

Q3vs4(x
∗) = n1 ln

(

|Σ̂1h|
|Σ̂1|

)

+ n2 ln

(

|Σ̂2h|
|Σ̂2|

)

∼ χ2(D − 1).

7.2 Probability and confidence regions for compo-

sitional data

Like confidence intervals, confidence regions are a measure of variability, although in this
case it is a measure of joint variability for the variables involved. They can be of interest
in themselves, to analyse the precision of the estimation obtained, but more frequently
they are used to visualise differences between groups. Recall that for compositional
data with three components, confidence regions can be plotted in the corresponding
ternary diagram, thus giving evidence of the relative behaviour of the various centres,
or of the populations themselves. The following method to compute confidence regions
assumes either multivariate normality, or the size of the sample to be large enough for
the multivariate central limit theorem to hold.

Consider a composition x ∈ SD and assume it follows a normal distribution on
SD as defined in section 6.1. Then, the (D − 1)-variate vector x∗ = h(x) follows a
multivariate normal distribution.

Three different cases might be of interest:

1. we know the true mean vector and the true variance matrix of the random vector
x∗, and want to plot a probability region;
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2. we do not know the mean vector and variance matrix of the random vector, and
want to plot a confidence region for its mean using a sample of size n,

3. we do not know the mean vector and variance matrix of the random vector, and
want to plot a probability region (incorporating our uncertainty).

In the first case, if a random vector x∗ follows a multivariate normal distribution
with known parameters µ and Σ, then

(x∗ − µ)Σ−1(x∗ − µ)′ ∼ χ2(D − 1),

is a chi square distribution of D − 1 degrees of freedom. Thus, for given α, we may
obtain (through software or tables) a value κ such that

1 − α = P
[

(x∗ − µ)Σ−1(x∗ − µ)′ ≤ κ
]

. (7.5)

This defines a (1 − α)100% probability region centred at µ in R
D, and consequently

x = h−1(x∗) defines a (1−α)100% probability region centred at the mean in the simplex.
Regarding the second case, it is well known that for a sample of size n (and x∗

normally-distributed or n big enough), the maximum likelihood estimates x̄∗ and Σ̂
satisfy that

n − D + 1

D − 1
(x̄∗ − µ)Σ̂−1(x̄∗ − µ)′ ∼ F(D − 1, n − D + 1),

follows a Fisher F distribution on (D−1, n−D+1) degrees of freedom (see Krzanowski,
1988, p. 227-228, for further details). Again, for given α, we may obtain a value c such
that

1 − α = P

[

n − D + 1

D − 1
(x̄∗ − µ)Σ̂−1(x̄∗ − µ)′ ≤ c

]

= P
[

(x̄∗ − µ)Σ̂−1(x̄∗ − µ)′ ≤ κ
]

, (7.6)

with κ = D−1
n−D+1

c. But (x̄∗ − µ)Σ̂−1(x̄∗ − µ)′ = κ (constant) defines a (1 − α)100%

confidence region centred at x̄∗ in R
D, and consequently ξ = h−1(µ) defines a (1 −

α)100% confidence region around the centre in the simplex.
Finally, in the third case, one should actually use the multivariate Student-Siegel

predictive distribution: a new value of x∗ will have as density

f(x∗|data) ∝
[

1 + (n − 1)

(

1 − 1

n

)

(x∗ − x̄∗) · Σ
]−1

· [(x∗ − x̄∗)′]
n/2

.

This distribution is unfortunately not commonly tabulated, and it is only available in
some specific packages. On the other side, if n is large with respect to D, the differences
between the first and third options are negligible.
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Note that for D = 3, D − 1 = 2 and we have an ellipse in real space, in any of the
first two cases: the only difference between them is how the constant κ is computed.
The parameterisation equations in polar coordinates, which are necessary to plot these
ellipses, are given in Appendix B.

7.3 Exercises

Exercise 7.1. Divide the sample of Table 5.1 into two groups (at your will) and perform
the different tests on the centres and covariance structures.

Exercise 7.2. Compute and plot a confidence region for the ilr transformed mean of
the data from table 2.1 in R

2.

Exercise 7.3. Transform the confidence region of exercise 7.2 back into the ternary
diagram using ilr−1.

Exercise 7.4. Compute and plot a 90% probability region for the ilr transformed data
of table 2.1 in R

2, together with the sample. Use the chi square distribution.

Exercise 7.5. For each of the four hypothesis in section 7.1, compute the number of
parameters to be estimated if the composition has D parts. The fourth hypothesis
needs more parameters than the other three. How many, with respect to each of the
three simpler hypothesis? Compare with the degrees of freedom of the χ2 distributions
of page 59.



Chapter 8

Compositional processes

Compositions can evolve depending on an external parameter like space, time, tem-
perature, pressure, global economic conditions and many other ones. The external
parameter may be continuous or discrete. In general, the evolution is expressed as a
function x(t), where t represents the external variable and the image is a composition in
SD. In order to model compositional processes, the study of simple models appearing
in practice is very important. However, apparently complicated behaviours represented
in ternary diagrams may be close to linear processes in the simplex. The main challenge
is frequently to identify compositional processes from available data. This is done using
a variety of techniques that depend on the data, the selected model of the process and
the prior knowledge about them. Next subsections present three simple examples of
such processes. The most important is the linear process in the simplex, that follows
a straight-line in the simplex. Other frequent process are the complementary processes
and mixtures. In order to identify the models, two standard techniques are presented:
regression and principal component analysis in the simplex. The first one is adequate
when compositional data are completed with some external covariates. Contrarily, prin-
cipal component analysis tries to identify directions of maximum variability of data, i.e.
a linear process in the simplex with some unobserved covariate.

8.1 Linear processes: exponential growth or decay

of mass

Consider D different species of bacteria which reproduce in a rich medium and assume
there are no interaction between the species. It is well-known that the mass of each
species grows proportionally to the previous mass and this causes an exponential growth
of the mass of each species. If t is time and each component of the vector x(t) represents
the mass of a species at the time t, the model is

x(t) = x(0) · exp(λt) , (8.1)

63
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where λ = [λ1, λ2, . . . , λD] contains the rates of growth corresponding to the species.
In this case, λi will be positive, but one can imagine λi = 0, the i-th species does not
vary; or λi < 0, the i-th species decreases with time. Model (8.1) represents a process
in which both the total mass of bacteria and the composition of the mass by species
are specified. Normally, interest is centred in the compositional aspect of (8.1) which
is readily obtained applying a closure to the equation (8.1). From now on, we assume
that x(t) is in SD.

A simple inspection of (8.1) permits to write it using the operations of the simplex,

x(t) = x(0) ⊕ t ⊙ p , p = exp(λ) , (8.2)

where a straight-line is identified: x(0) is a point on the line taken as the origin; p is a
constant vector representing the direction of the line; and t is a parameter with values
on the real line (positive or negative).

The linear character of this process is enhanced when it is represented using coor-
dinates. Select a basis in SD, for instance, using balances determined by a sequential
binary partition, and denote the coordinates u(t) = ilr(x)(t), q = ilr(p). The model
for the coordinates is then

u(t) = u(0) + t · q , (8.3)

a typical expression of a straight-line in R
D−1. The processes that follow a straight-line

in the simplex are more general than those represented by Equations (8.2) and (8.3),
because changing the parameter t by any function φ(t) in the expression, still produces
images on the same straight-line.

Example 8.1 (growth of bacteria population). Set D = 3 and consider species 1, 2, 3,
whose relative masses were 82.7%, 16.5% and 0.8% at the initial observation (t = 0).
The rates of growth are known to be λ1 = 1, λ2 = 2 and λ3 = 3. Select the sequential
binary partition and balances specified in Table 8.1.

Table 8.1: Sequential binary partition and balance-coordinates used in the example growth of bacteria

population

order x1 x2 x3 balance-coord.

1 +1 +1 −1 u1 = 1√
6
ln x1x2

x2
3

2 +1 −1 0 u2 = 1√
2
ln x1

x2

The process of growth is shown in Figure 8.1, both in a ternary diagram (left) and in
the plane of the selected coordinates (right). Using coordinates it is easy to identify that
the process corresponds to a straight-line in the simplex. Figure 8.2 shows the evolution
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Figure 8.1: Growth of 3 species of bacteria in 5 units of time. Left: ternary diagram; axis used are
shown (thin lines). Right: process in coordinates.
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Figure 8.2: Growth of 3 species of bacteria in 5 units of time. Evolution of per unit of mass for each
species. Left: per unit of mass. Right: cumulated per unit of mass; x1, lower band; x2, intermediate
band; x3 upper band. Note the inversion of abundances of species 1 and 3.

of the process in time in two usual plots: the one on the left shows the evolution of each
part-component in per unit ; on the right, the same evolution is presented as parts adding
up to one in a cumulative form. Normally, the graph on the left is more understandable
from the point of view of evolution.

Example 8.2 (washing process). A liquid reservoir of constant volume V receives an
input of the liquid of Q (volume per unit time) and, after a very active mixing inside
the reservoir, an equivalent output Q is released. At time t = 0, volumes (or masses)
x1(0), x2(0), x3(0) of three contaminants are stirred in the reservoir. The contaminant
species are assumed non-reactive. Attention is paid to the relative content of the three
species at the output in time. The output concentration is proportional to the mass in
the reservoir (Albarède, 1995)[p.346],

xi(t) = xi(0) · exp

(

− t

V/Q

)

, i = 1, 2, 3 .
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After closure, this process corresponds to an exponential decay of mass in S3. The
peculiarity is that, in this case, λi = −Q/V for the three species. A representation in
orthogonal balances, as functions of time, is

u1(t) =
1√
6

ln
x1(t)x2(t)

x2
3(t)

=
1√
6

ln
x1(0)x2(0)

x2
3(0)

,

u2(t) =
1√
2

ln
x1(t)

x2(t)
=

1√
2

ln
x1(0)

x2(0)
.

Therefore, from the compositional point of view, the relative concentration of the con-
taminants in the subcomposition associated with the three contaminants is constant.
This is not in contradiction to the fact that the mass of contaminants decays exponen-
tially in time.

Exercise 8.1. Select two arbitrary 3-part compositions, x(0), x(t1), and consider the
linear process from x(0) to x(t1). Determine the direction of the process normalised
to one and the time, t1, necessary to arrive to x(t1). Plot the process in a) a ternary
diagram, b) in balance-coordinates, c) evolution in time of the parts normalised to a
constant.

Exercise 8.2. Chose x(0) and p in S3. Consider the process x(t) = x(0) ⊕ t⊙ p with
0 ≤ t ≤ 1. Assume that the values of the process at t = j/49, j = 1, 2, . . . , 50 are
perturbed by observation errors, y(t) distributed as a normal on the simplex Ns(µ, Σ),
with µ = C[1, 1, 1] and Σ = σ2I3 (I3 unit (3×3)-matrix). Observation errors are assumed
independent of t and x(t). Plot x(t) and z(t) = x(t) ⊕ y(t) in a ternary diagram and
in a balance-coordinate plot. Try with different values of σ2.

8.2 Complementary processes

Apparently simple compositional processes appear to be non-linear in the simplex. This
is the case of systems in which the mass from some components are transferred into other
ones, possibly preserving the total mass. For a general instance, consider the radioactive
isotopes {x1, x2, . . . , xn} that disintegrate into non-radioactive materials {xn+1, xn+2,
. . . , xD}. The process in time t is described by

xi(t) = xi(0) · exp(−λit) , xj(t) = xj(0) +
n
∑

i=1

aij(xi(0) − xi(t)) ,
n
∑

i=1

aij = 1 ,

with 1 ≤ i ≤ n and n + 1 ≤ j ≤ D. From the compositional point of view, the
subcomposition corresponding to the first group behaves as a linear process. The second
group of parts {xn+1, xn+2, . . . , xD} is called complementary because it sums up to
preserve the total mass in the system and does not evolve linearly despite of its simple
form.
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Example 8.3 (one radioactive isotope). Consider the radioactive isotope x1 which is
transformed into the non-radioactive isotope x3, while the element x2 remains unaltered.
This situation, with λ1 < 0, corresponds to

x1(t) = x1(0) · exp(λ1t) , x2(t) = x2(0) , x3(t) = x3(0) + x1(0) − x1(t) ,

that is mass preserving. The group of parts behaving linearly is {x1, x2}, and a com-
plementary group is {x3}. Table 8.2 shows parameters of the model and Figures 8.3
and 8.4 show different aspects of the compositional process from t = 0 to t = 10.

Table 8.2: Parameters for Example 8.3: one radioactive isotope. Disintegration rate is ln 2 times
the inverse of the half-lifetime. Time units are arbitrary. The lower part of the table represents the
sequential binary partition used to define the balance-coordinates.

parameter x1 x2 x3

disintegration rate 0.5 0.0 0.0
initial mass 1.0 0.4 0.5
balance 1 +1 +1 −1
balance 2 +1 −1 0

x1

x2 x3
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Figure 8.3: Disintegration of one isotope x1 into x3 in 10 units of time. Left: ternary diagram; axis
used are shown (thin lines). Right: process in coordinates. The mass in the system is constant and
the mass of x2 is constant.

A first inspection of the Figures reveals that the process appears as a segment in the
ternary diagram (Fig. 8.3, right). This fact is essentially due to the constant mass of x2

in a conservative system, thus appearing as a constant per-unit. In figure 8.3, left, the
evolution of the coordinates shows that the process is not linear; however, except for
initial times, the process may be approximated by a linear one. The linear or non-linear
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Figure 8.4: Disintegration of one isotope x1 into x3 in 10 units of time. Evolution of per unit of
mass for each species. Left: per unit of mass. Right: cumulated per unit of mass; x1, lower band; x2,
intermediate band; x3 upper band. Note the inversion of abundances of species 1 and 3.

character of the process is hardly detected in Figures 8.4 showing the evolution in time
of the composition.

Example 8.4 (three radioactive isotopes). Consider three radioactive isotopes that
we identify with a linear group of parts, {x1, x2, x3}. The disintegrated mass of x1

is distributed on the non-radioactive parts {x4, x5, x6} (complementary group). The
whole disintegrated mass from x2 and x3 is assigned to x4 and x5 respectively. The

Table 8.3: Parameters for Example 8.4: three radioactive isotopes. Disintegration rate is ln 2 times
the inverse of the half-lifetime. Time units are arbitrary. The middle part of the table corresponds to
the coefficients aij indicating the part of the mass from xi component transformed into the xj . Note
they add to one and the system is mass conservative. The lower part of the table shows the sequential
binary partition to define the balance coordinates.

parameter x1 x2 x3 x4 x5 x6

disintegration rate 0.2 0.04 0.4 0.0 0.0 0.0
initial mass 30.0 50.0 13.0 1.0 1.2 0.7

mass from x1 0.0 0.0 0.0 0.7 0.2 0.1
mass from x2 0.0 0.0 0.0 0.0 1.0 0.0
mass from x3 0.0 0.0 0.0 0.0 0.0 1.0

balance 1 +1 +1 +1 −1 −1 −1
balance 2 +1 +1 −1 0 0 0
balance 3 +1 −1 0 0 0 0
balance 4 0 0 0 +1 +1 −1
balance 5 0 0 0 +1 −1 0
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Figure 8.5: Disintegration of three isotopes x1, x2, x3. Disintegration products are masses added to
x4, x5, x6 in 20 units of time. Left: evolution of per unit of mass of x4, x5, x6. Right: x4, x5, x6 process
in coordinates; a loop and a double point are revealed.
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Figure 8.6: Disintegration of three isotopes x1, x2, x3. Products are masses added to x4, x5, x6, in 20
units of time, represented in the ternary diagram. Loop and double point are visible.

values of the parameters considered are shown in Table 8.3. Figure 8.5 (left) shows
the evolution of the subcomposition of the complementary group in 20 time units; no
special conclusion is got from it. Contrarily, Figure 8.5 (right), showing the evolution
of the coordinates of the subcomposition, reveals a loop in the evolution with a double
point (the process passes two times through this compositional point); although less
clearly, the same fact can be observed in the representation of the ternary diagram in
Figure 8.6. This is a quite surprising and involved behaviour despite of the very simple
character of the complementary process. Changing the parameters of the process one
can obtain more simple behaviours, for instance without double points or exhibiting less
curvature. However, these processes only present one possible double point or a single
bend point; the branches far from these points are suitable for a linear approximation.

Example 8.5 (washing process (continued)). Consider the washing process. Let us
assume that the liquid is water with density equal to one and define the mass of water
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x0(t) = V · 1−∑ xi(t), that may be considered as a complementary process. The mass
concentration at the output is the closure of the four components, being the closure
constant proportional to V . The compositional process is not a straight-line in the
simplex, because the new balance now needed to represent the process is

y0(t) =
1√
12

ln
x1(t)x2(t)x3(t)

x3
0(t)

,

that is neither a constant nor a linear function of t.

Exercise 8.3. In the washing process example, set x1(0) = 1., x2(0) = 2., x3(0) = 3.,
V = 100., Q = 5.. Find the sequential binary partition used in the example. Plot the
evolution in time of the coordinates and mass concentrations including the water x0(t).
Plot, in a ternary diagram, the evolution of the subcomposition x0, x1, x2.

8.3 Mixture process

Another kind of non-linear process in the simplex is that of the mixture processes.
Consider two large containers partially filled with D species of materials or liquids with
mass (or volume) concentrations given by x and y in SD. The total masses in the
containers are m1 and m2 respectively. Initially, the concentration in the first container
is z0 = x. The content of the second container is steadily poured and stirred in the first
one. The mass transferred from the second to the first container is φm2 at time t, i.e.
φ = φ(t). The evolution of mass in the first container, is

(m1 + φ(t)m2) · z(t) = m1 · x + φ(t)m2 · y ,

where z(t) is the process of the concentration in the first container. Note that x, y, z

are considered closed to 1. The final composition in the first container is

z1 =
1

m1 + m2

(m1x + m2y) (8.4)

The mixture process can be alternatively expressed as mixture of the initial and final
compositions (often called end-points):

z(t) = α(t)z0 + (1 − α(t))z1 ,

for some function of time, α(t), where, to fit the physical statement of the process,
0 ≤ α ≤ 1. But there is no problem in assuming that α may take values on the whole
real-line.
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Example 8.6 (Obtaining a mixture). A mixture of three liquids is in a large container
A. The numbers of volume units in A for each component are [30, 50, 13], i.e. the
composition in ppu (parts per unit) is z0 = z(0) = [0.3226, 0.5376, 0.1398]. Another
mixture of the three liquids, y, is in container B. The content of B is poured and
stirred in A. The final concentration in A is z1 = [0.0411, 0.2740, 0.6849]. One can ask
for the composition y and for the required volume in container B. Using the notation
introduced above, the initial volume in A is m1 = 93, the volume and concentration in B
are unknown. Equation (8.4) is now a system of three equations with three unknowns:
m2, y1, y2 (the closure condition implies y3 = 1 − y1 − y2):

m1





z1 − x1

z2 − x2

z3 − x3



 = m2





y1 − z1

y2 − z2

1 − y2 − y3 − z3



 , (8.5)

which, being a simple system, is not linear in the unknowns. Note that (8.5) involves
masses or volumes and, therefore, it is not a purely compositional equation. This
situation always occurs in mixture processes. Figure 8.7 shows the process of mixing (M)
both in a ternary diagram (left) and in the balance-coordinates u1 = 6−1/2 ln(z1z2/z3),
u2 = 2−1/2 ln(z1/z2) (right). Fig. 8.7 also shows a perturbation-linear process, i.e. a
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Figure 8.7: Two processes going from z0 to z1. (M) mixture process; (P) linear perturbation
process. Representation in the ternary diagram, left; using balance-coordinates u1 = 6−1/2 ln(z1z2/z3),
u2 = 2−1/2 ln(z1/z2), right.

straight-line in the simplex, going from z0 to z1 (P).

Exercise 8.4. In the example obtaining a mixture find the necessary volume m2 and
the composition in container B, y. Find the direction of the perturbation-linear process
to go from z0 to z1.

Exercise 8.5. A container has a constant volume V = 100 volume units and initially
contains a liquid whose composition is x(0) = C[1, 1, 1]. A constant flow of Q = 1 volume
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unit per second with volume composition x = C[80, 2, 18] gets into the box. After a
complete mixing there is an output whose flow equals Q with the volume composition
x(t) at the time t. Model the evolution of the volumes of the three components in
the container using ordinary linear differential equations and solve them (Hint: these
equations are easily found in textbooks, e.g. Albarède (1995)[p. 345–350]). Are you
able to plot the curve for the output composition x(t) in the simplex without using the
solution of the differential equations? Is it a mixture?

8.4 Linear regression with compositional response

Linear regression is intended to identify and estimate a linear model from response data
that depend linearly on one or more covariates. The assumption is that responses are
affected by errors or random deviations of the mean model. The most usual methods
to fit the regression coefficients are the well-known least-squares techniques.

The problem of regression when the response is compositional is stated as follows.
A compositional sample in SD is available and it is denoted by x1, x2, . . . , xn. The i-th
datum xi is associated with one or more external variables or covariates grouped in the
vector ti = [ti0, ti1, . . . , tir], where t0 = 1. The goal is to estimate the coefficients of a
curve or surface in SD whose equation is

x̂(t) = β0 ⊕ (t1 ⊙ β1) ⊕ · · · ⊕ (tr ⊙ βr) =
r
⊕

j=0

(tj ⊙ βj) , (8.6)

where t = [t0, t1, . . . , tr] are real covariates and are identified as the parameters of the
curve or surface; the first parameter is defined as the constant t0 = 1, as assumed for the
observations. The compositional coefficients of the model, βj ∈ SD, are to be estimated
from the data. The model (8.6) is very general and takes different forms depending on
how the covariates tj are defined. For instance, defining tj = tj , being t a covariate, the
model is a polynomial, particularly, if r = 1, it is a straight-line in the simplex (8.2).

The most popular fitting method of the model (8.6) is the least-squares deviation
criterion. As the response x(t) is compositional, it is natural to measure deviations
also in the simplex using the concepts of the Aitchison geometry. The deviation of the
model (8.6) from the data is defined as x̂(ti) ⊖ xi and its size by the Aitchison norm
‖x̂(ti) ⊖ xi‖2

a = d2
a(x̂(ti),xi). The target function (sum of squared errors, SSE) is

SSE =
n
∑

i=1

‖x̂(ti) ⊖ xi‖2
a ,

to be minimised as a function of the compositional coefficients βj which are implicit in
x̂(ti). The number of coefficients to be estimated in this linear model is (r+1) ·(D−1).
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This least-squares problem is reduced to D−1 ordinary least-squares problems when
the compositions are expressed in coordinates with respect to an orthonormal basis of
the simplex. Assume that an orthonormal basis has been chosen in SD and that the coor-
dinates of x̂(t), xi y βj are x∗

i = [x∗
i1, x

∗
i2, . . . , x

∗
i,D−1], x̂∗(t) = [x̂∗

1(t), x̂
∗
2(t), . . . , x̂

∗
D−1(t)]

and β∗
j = [β∗

j1, β
∗
j2, . . . , β

∗
j,D−1], being these vectors in R

D−1. Since perturbation and
powering in the simplex are translated into the ordinary sum and product by scalars in
the coordinate real space, the model (8.6) is expressed in coordinates as

x̂∗(t) = β∗
0 + β∗

1 t1 + · · ·+ β∗
r tr =

r
∑

j=0

β∗
j tj .

For each coordinate, this expression becomes

x̂∗
k(t) = β∗

0k + β∗
1k t1 + · · ·+ β∗

rk tr , k = 1, 2, . . . , D − 1 . (8.7)

Also Aitchison norm and distance become the ordinary norm and distance in real space.
Then, using coordinates, the target function is expressed as

SSE =

n
∑

i=1

‖x̂∗(ti) − x∗
i ‖2 =

D−1
∑

k=1

{

n
∑

i=1

|x̂∗
k(ti) − x∗

ik|2
}

, (8.8)

where ‖ · ‖ is the norm of a real vector. The last right-hand member of (8.8) has been
obtained permuting the order of the sums on the components of the vectors and on
the data. All sums in (8.8) are non-negative and, therefore, the minimisation of SSE
implies the minimisation of each term of the sum in k,

SSEk =
n
∑

i=1

|x̂∗
k(ti) − x∗

ik|2 , k = 1, 2, . . . , D − 1 . (8.9)

This is, the fitting of the compositional model (8.6) reduces to the D − 1 ordinary
least-squares problems in (8.7).

Example 8.7 (Vulnerability of a system). A system is subjected to external actions.
The response of the system to such actions is frequently a major concern in engineering.
For instance, the system may be a dike under the action of ocean-wave storms; the
response may be the level of service of the dike after one event. In a simplified scenario,
three responses of the system may be considered: θ1, service; θ2, damage; θ3 collapse.
The dike can be designed for a design action, e.g. wave-height, d, ranging 3 ≤ d ≤ 20
(metres wave-height). Actions, parameterised by some wave-height of the storm, h, also
ranging 3 ≤ d ≤ 20 (metres wave-height). Vulnerability of the system is described by
the conditional probabilities

pk(d, h) = P[θk|d, h] , k = 1, 2, 3 = D ,

D
∑

k=1

pk(d, h) = 1 ,
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where, for any d, h, p(d, h) = [p1(d, h), p2(d, h), p3(d, h)] ∈ S3. In practice, p(d, h) only
is approximately known for a limited number of values p(di, hi), i = 1, . . . , n. The
whole model of vulnerability can be expressed as a regression model

p̂(d, h) = β0 ⊕ (d ⊙ β1) ⊕ (h ⊙ β2) , (8.10)

so that it can be estimated by regression in the simplex.
Consider the data in Table 8.4 containing n = 9 probabilities. Figure 8.8 shows the
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Figure 8.8: Vulnerability models obtained by regression in the simplex from the data in the Table
8.4. Horizontal axis: incident wave-height in m. Vertical axis: probability of the output response.
Shown designs are 3.5, 6.0, 8.5, 11.0, 13.5, 16.0 (m design wave-height).

vulnerability probabilities obtained by regression for six design values. An inspection of
these Figures reveals that a quite realistic model has been obtained from a really poor
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Figure 8.9: Vulnerability models in Figure 8.8 in coordinates (left) and in the ternary diagram (right).
Design 3.5 (circles); 16.0 (thick line).

sample: service probabilities decrease as the level of action increases and conversely for
collapse. This changes smoothly for increasing design level. Despite the challenging
shapes of these curves describing the vulnerability, they come from a linear model as
can be seen in Figure 8.9 (left). In Figure 8.9 (right) these straight-lines in the simplex
are shown in a ternary diagram. In these cases, the regression model has shown its
smoothing capabilities.

Exercise 8.6 (sand-silt-clay from a lake). Consider the data in Table 8.5. They are
sand-silt-clay compositions from an Arctic lake taken at different depths (adapted from
Coakley and Rust (1968) and cited in Aitchison (1986)). The goal is to check whether
there is some trend in the composition related to the depth. Particularly, using the
standard hypothesis testing in regression, check the constant and the straight-line mod-
els

x̂(t) = β0 , x̂(t) = β0 ⊕ (t ⊙ β1) ,

being t =depth. Plot both models, the fitted model and the residuals, in coordinates
and in the ternary diagram.

8.5 Principal component analysis

Closely related to the biplot is principal component analysis (PC analysis for short),
as both rely on the singular value decomposition. The underlying idea is very simple.
Consider a data matrix X and assume it has been already centred. Call Z the matrix
of ilr coefficients of X. From standard theory we know how to obtain the matrix M of
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eigenvectors {m1,m2, . . . ,mD−1} of Z′Z. This matrix is orthonormal and the variability
of the data explained by the i-th eigenvector is λi, the i-th eigenvalue. Assume the
eigenvalues have been labelled in descending order of magnitude, λ1 > λ2 > · · · >
λD−1. Call {a1, a2, . . . , aD−1} the backtransformed eigenvectors, i.e. ilr−1(mi) = ai.
PC analysis consists then in retaining the first c compositional vectors {a1, a2, . . . , ac}
for a desired proportion of total variability explained. This proportion is computed as
∑c

i=1 λi/(
∑D−1

j=1 λj).

Like standard principal component analysis, PC analysis can be used as a dimension
reducing technique for compositional observations. In fact, if the first two or three PC’s
explain enough variability to be considered as representative enough, they can be used
to gain further insight into the overall behaviour of the sample. In particular, the first
two can be used for a representation in the ternary diagram. Some recent case studies
support the usefulness of this approach (Otero et al., 2003; Tolosana-Delgado et al.,
2005).

What has certainly proven to be of interest is the fact that PC’s can be considered
as the appropriate modelling tool whenever the presence of a trend in the data is
suspected, but no external variable has been measured on which it might depend. To
illustrate this fact let us consider the most simple case, in which one PC explains a large
proportion of the total variance, e.g. more then 98%, like the one in Figure 8.10, where
the subcomposition [Fe2O3,K2O,Na2O] from Table 5.1 has been used without samples
14 and 15. The compositional line going through the barycentre of the simplex, α⊙a1,

Figure 8.10: Principal components in S3. Left: before centring. Right: after centring

describes the trend reflected by the centred sample, and g ⊕ α ⊙ a1, with g the centre
of the sample, describes the trend reflected in the non-centred data set. The evolution
of the proportion per unit volume of each part, as described by the first principal
component, is reflected in Figure 8.11 left, while the cumulative proportion is reflected
in Figure 8.11 right.

To interpret a trend we can use Equation (3.1), which allows us to rescale the vector
a1 assuming whatever is convenient according to the process under study, e.g. that one
part is stable. Assumptions can be made only on one part, as the interrelationship with
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Figure 8.11: Evolution of proportions as described by the first principal component. Left: propor-
tions. Right: cumulated proportions.

the other parts conditions their value. A representation of the result is also possible, as
can be seen in Figure 8.12. The component assumed to be stable, K2O, has a constant,
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Figure 8.12: Interpretation of a principal component in S2 under the assumption of stability of K2O.

unit perturbation coefficient, and we see that under this assumption, within the range
of variation of the observations, Na2O has only a very small increase, which is hardly
to perceive, while Fe2O3 shows a considerable increase compared to the other two. In
other words, one possible explanation for the observed pattern of variability is that
Fe2O3 varies significantly, while the other two parts remain stable.

The graph gives even more information: the relative behaviour will be preserved
under any assumption. Thus, if the assumption is that K2O increases (decreases), then
Na2O will show the same behaviour as K2O, while Fe2O3 will always change from below
to above.

Note that, although we can represent a perturbation process described by a PC only
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in a ternary diagram, we can extend the representation in Figure 8.12 easily to as many
parts as we might be interested in.
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Table 8.4: Assumed vulnerability for a dike with only three outputs or responses. Probability values
of the response θk conditional to values of design d and level of the storm h.

di hi service damage collapse
3.0 3.0 0.50 0.49 0.01
3.0 10.0 0.02 0.10 0.88
5.0 4.0 0.95 0.049 0.001
6.0 9.0 0.08 0.85 0.07
7.0 5.0 0.97 0.027 0.003
8.0 3.0 0.997 0.0028 0.0002
9.0 9.0 0.35 0.55 0.01

10.0 3.0 0.999 0.0009 0.0001
10.0 10.0 0.30 0.65 0.05

Table 8.5: Sand, silt, clay composition of sediment samples at different water depths in an Arctic
lake.
sample no. sand silt clay depth (m) sample no. sand silt clay depth (m)

1 77.5 19.5 3.0 10.4 21 9.5 53.5 37.0 47.1
2 71.9 24.9 3.2 11.7 22 17.1 48.0 34.9 48.4
3 50.7 36.1 13.2 12.8 23 10.5 55.4 34.1 49.4
4 52.2 40.9 6.9 13.0 24 4.8 54.7 40.5 49.5
5 70.0 26.5 3.5 15.7 25 2.6 45.2 52.2 59.2
6 66.5 32.2 1.3 16.3 26 11.4 52.7 35.9 60.1
7 43.1 55.3 1.6 18.0 27 6.7 46.9 46.4 61.7
8 53.4 36.8 9.8 18.7 28 6.9 49.7 43.4 62.4
9 15.5 54.4 30.1 20.7 29 4.0 44.9 51.1 69.3
10 31.7 41.5 26.8 22.1 30 7.4 51.6 41.0 73.6
11 65.7 27.8 6.5 22.4 31 4.8 49.5 45.7 74.4
12 70.4 29.0 0.6 24.4 32 4.5 48.5 47.0 78.5
13 17.4 53.6 29.0 25.8 33 6.6 52.1 41.3 82.9
14 10.6 69.8 19.6 32.5 34 6.7 47.3 46.0 87.7
15 38.2 43.1 18.7 33.6 35 7.4 45.6 47.0 88.1
16 10.8 52.7 36.5 36.8 36 6.0 48.9 45.1 90.4
17 18.4 50.7 30.9 37.8 37 6.3 53.8 39.9 90.6
18 4.6 47.4 48.0 36.9 38 2.5 48.0 49.5 97.7
19 15.6 50.4 34.0 42.2 39 2.0 47.8 50.2 103.7
20 31.9 45.1 23.0 47.0
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Universitat Politècnica de Catalunya, Barcelona, Spain.

McAlister, D. (1879). The law of the geometric mean. Proceedings of the Royal Society
of London 29, 367–376.

Mosimann, J. E. (1962). On the compound multinomial distribution, the multivariate
β-distribution and correlations among proportions. Biometrika 49 (1-2), 65–82.

Otero, N., R. Tolosana-Delgado, and A. Soler (2003). A factor analysis of hidro-
chemical composition of Llobregat river basin. See Thió-Henestrosa and Mart́ın-
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G. Kovács (2007). Balance-dendrogram. a new routine of codapack. Computer
& Geosciences.



86 BIBLIOGRAPHY
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A. Plotting a ternary diagram

Denote the three vertices of the ternary diagram counter-clockwise from the upper
vertex as A, B and C (see Figure 13). The scale of the plot is arbitrary and a unitary
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Figure 13: Plot of the frame of a ternary diagram. The shift plotting coordinates are [u0, v0] =
[0.2, 0.2], and the length of the side is 1.

equilateral triangle can be chosen. Assume that [u0, v0] are the plotting coordinates
of the B vertex. The C vertex is then C = [u0 + 1, v0]; and the vertex A has abscisa
u0+0.5 and the square-height is obtained using Pythagorean Theorem: 12−0.52 = 3/4.
Then, the vertex A = [u0 +0.5, v0 +

√
3/2]. These are the vertices of the triangle shown

in Figure 13, where the origin has been shifted to [u0, v0] in order to center the plot.
The figure is obtained plotting the segments AB, BC, CA.

To plot a sample point x = [x1, x2, x3], closed to a constant κ, the corresponding
plotting coordinates [u, v] are needed. They are obtained as a convex linear combination
of the plotting coordinates of the vertices

[u, v] =
1

κ
(x1A + x2B + x3C) ,

with

A = [u0 + 0.5, v0 +
√

3/2] , B = [u0, v0] , C = [u0 + 1, v0] .

a



b Appendix A. The ternary diagram

Note that the coefficients of the convex linear combination must be closed to 1 as
obtained dividing by κ. Deformed ternary diagrams can be obtained just changing the
plotting coordinates of the vertices and maintaining the convex linear combination.



B. Parametrisation of an elliptic

region

To plot an ellipse in R
2, and to plot its backtransform in the ternary diagram, we need

to give to the plotting program a sequence of points that it can join by a smooth curve.
This requires the points to be in a certain order, so that they can be joint consecutively.
The way to do this is to use polar coordinates, as they allow to give a consecutive
sequence of angles which will follow the border of the ellipse in one direction. The
degree of approximation of the ellipse will depend on the number of points used for
discretisation.

The algorithm is based on the following reasoning. Imagine an ellipse located in R
2

with principal axes not parallel to the axes of the Cartesian coordinate system. What we
have to do to express it in polar coordinates is (a) translate the ellipse to the origin; (b)
rotate it in such a way that the principal axis of the ellipse coincide with the axis of the
coordinate system; (c) stretch the axis corresponding to the shorter principal axis in such
a way that the ellipse becomes a circle in the new coordinate system; (d) transform the
coordinates into polar coordinates using the simple expressions x∗ = r cos ρ, y∗ = r sin ρ;
(e) undo all the previous steps in inverse order to obtain the expression of the original
equation in terms of the polar coordinates. Although this might sound tedious and
complicated, in fact we have results from matrix theory which tell us that this procedure
can be reduced to a problem of eigenvalues and eigenvectors.

In fact, any symmetric matrix can be decomposed into the matrix product QΛQ′,
where Λ is the diagonal matrix of eigenvalues and Q is the matrix of orthonormal
eigenvectors associated with them. For Q we have that Q′ = Q−1 and therefore (Q′)−1 =
Q. This can be applied to either the first or the second options of the last section.

In general, we are interested in ellipses whose matrix is related to the sample covari-
ance matrix Σ̂, particularly its inverse. We have Σ̂−1 = QΛ−1Q′ and substituting into
the equation of the ellipse (7.5), (7.6):

(x̄∗ − µ)QΛ−1Q′(x̄∗ − µ)′ = (Q′(x̄∗ − µ)′)′Λ−1(Q′(x̄∗ − µ)′) = κ ,

where x̄∗ is the estimated centre or mean and µ describes the ellipse. The vector
Q′(x̄∗−µ)′ corresponds to a rotation in real space in such a way, that the new coordinate

c



d Appendix B. Parametrisation of an elliptic region

axis are precisely the eigenvectors. Given that Λ is a diagonal matrix, the next step
consists in writing Λ−1 = Λ−1/2Λ−1/2, and we get:

(Q′(x̄∗ − µ)′)′Λ−1/2Λ−1/2(Q′(x̄∗ − µ)′)

= (Λ−1/2Q′(x̄∗ − µ)′)′(Λ−1/2Q′(x̄∗ − µ)′) = κ.

This transformation is equivalent to a re-scaling of the basis vectors in such a way, that
the ellipse becomes a circle of radius

√
κ, which is easy to express in polar coordinates:

Λ−1/2Q′(x̄∗ − µ)′ =

(√
κ cos θ√
κ sin θ

)

, or (x̄∗ − µ)′ = QΛ1/2

(√
κ cos θ√
κ sin θ

)

.

The parametrisation that we are looking for is thus given by:

µ′ = (x̄∗)′ − QΛ1/2

(√
κ cos θ√
κ sin θ

)

.

Note that QΛ1/2 is the upper triangular matrix of the Cholesky decomposition of Σ̂:

Σ̂ = QΛ1/2Λ1/2Q′ = (QΛ1/2)(Λ1/2Q′) = UL;

thus, from Σ̂ = UL and L = U ′ we get the condition:
(

u11 u12

0 u22

)(

u11 0
u12 u22

)

=

(

Σ̂11 Σ̂12

Σ̂12 Σ̂22

)

,

which implies

u22 =

√

Σ̂22,

u12 =
Σ̂12
√

Σ̂22

,

u11 =

√

Σ̂11Σ̂22 − Σ̂2
12

Σ̂22

=

√

|Σ̂|
Σ̂22

,

and for each component of the vector µ we obtain:

µ1 = x̄∗
1 −

√

|Σ̂|
Σ̂22

√
κ cos θ − Σ̂12

√

Σ̂22

√
κ sin θ

µ2 = x̄∗
2 −

√

Σ̂22

√
κ sin θ.

The points describing the ellipse in the simplex are ilr−1(µ) (see Section 4.4).
The procedures described apply to the three cases studied in section 7.2, just using

the appropriate covariance matrix Σ̂. Finally, recall that κ will be obtained from a
chi-square distribution.


