Compositional Data Analysis in a Nutshell

report errors to: Raimon Tolosana-Delgado, raimon.tolosana@geo.uni-goettingen.de
version: November 10, 2008

Geometry

Characteristics

- Compositional data are vectors of non-negative components showing the relative weight or importance of a set of parts in a total.
- The total sum of a compositional vector is considered irrelevant, or an artifact of the sampling procedure.
- No individual component can be interpreted isolated from the other. A composition carries no absolute information on increment/decrement of mass.
- The sample space (or set of possible values) is called the simplex: this is the set of vectors of positive (or zero) components and constant sum:

$$
S^{D}=\left\{\mathbf{x}=\left[x_{1} ; \ldots ; x_{D}\right] \mid x_{i} \geq 0 \text { and } \sum_{j=1}^{D} x_{j}=\kappa\right\}
$$

with $\kappa=1,100,10^{6}, 10^{9}$ (proportions, \%, ppm, $\mathrm{ppb})$, etc.

Compositional operations

Take $\mathbf{x}=\left[x_{1}, \ldots x_{D}\right], \mathbf{y}=\left[y_{1}, \ldots y_{D}\right], \mathbf{z}=\left[z_{1}, \ldots z_{D}\right]$ compositions of D parts, and λ a real value. The compositional operations are

- closure:

$$
\mathbf{x}=\mathcal{C}\left[\mathbf{x}^{\prime}\right]=\frac{\kappa}{\sum_{i=1}^{D} x_{i}^{\prime}} \mathbf{x}^{\prime}
$$

- perturbation (replacing sum and subtraction):

$$
\begin{aligned}
& \mathbf{z}=\mathbf{x} \oplus \mathbf{y}=\mathcal{C}\left[x_{1} \cdot y_{1} ; \ldots ; x_{D} \cdot y_{D}\right] \\
& \mathbf{z}=\mathbf{x} \ominus \mathbf{y}=\mathcal{C}\left[x_{1} / y_{1} ; \ldots ; x_{D} / y_{D}\right]
\end{aligned}
$$

- power transformation (replacing scaling):

$$
\mathbf{z}=\lambda \odot \mathbf{x}=\mathcal{C}\left[x_{1}^{\lambda} ; \ldots ; x_{D}^{\lambda}\right]
$$

- Aitchison scalar product (repl. dot product):

$$
\langle\mathbf{x} \mid \mathbf{y}\rangle_{a}=\frac{1}{2 D} \sum_{i=1}^{D} \sum_{j=1}^{D} \ln \frac{x_{i}}{x_{j}} \ln \frac{y_{i}}{y_{j}}
$$

- Aitchison distance (repl. Euclidean distance):

$$
d^{2}(\mathbf{x}, \mathbf{y})_{a}=\frac{1}{2 D} \sum_{i=1}^{D} \sum_{j=1}^{D}\left(\ln \frac{x_{i}}{x_{j}}-\ln \frac{y_{i}}{y_{j}}\right)^{2}
$$

Log-ratio transformations

- additive log-ratio transform (and inverse)

$$
\begin{aligned}
\operatorname{alr}(\mathbf{x}) & =\mathbf{y}=\left[\ln \frac{x_{1}}{x_{D}} ; \ldots ; \ln \frac{x_{D-1}}{x_{D}}\right]= \\
& =\ln (\mathbf{x}) \cdot\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
-1 & -1 & \cdots & -1
\end{array}\right) \\
\operatorname{alr}^{-1}(\mathbf{y}) & =\mathcal{C}[\exp ([\mathbf{y} ; 0])]
\end{aligned}
$$

- centered log-ratio transform $\left(g(\mathbf{x})=\sqrt[D]{x_{1} \cdots x_{D}}\right)$

$$
\begin{aligned}
\operatorname{clr}(\mathbf{x}) & =\mathbf{z}=\left[\ln \frac{x_{1}}{g(\mathbf{x})} ; \ldots ; \ln \frac{x_{D}}{g(\mathbf{x})}\right] \\
& =\frac{\ln (\mathbf{x})}{D} \cdot\left(\begin{array}{cccc}
D-1 & -1 & \cdots & -1 \\
-1 & D-1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & D-1
\end{array}\right) \\
\operatorname{clr}^{-1}(\mathbf{z}) & =\mathcal{C}[\exp (\mathbf{z})]
\end{aligned}
$$

- isometric log-ratio transform

$$
\operatorname{ilr}_{V}(\mathbf{x})=\operatorname{clr}(\mathbf{x}) \cdot \mathbf{V}=\ln (\mathbf{x}) \cdot \mathbf{V}
$$

for a given matrix \mathbf{V} of D rows and $(D-1)$ columns such that $\mathbf{V} \cdot \mathbf{V}^{t}=\mathbf{I}_{D-1}$ (identity matrix of D-1 elements) and $\mathbf{V} \cdot \mathbf{V}^{t}=\mathbf{I}_{D}+a \mathbf{1}$, where a may be any value, and $\mathbf{1}$ is a matrix full of ones. The inverse is

$$
\operatorname{ilr}_{V}^{-1}(\mathbf{x})=\mathcal{C}\left[\exp \left(\mathbf{x} \cdot \mathbf{V}^{t}\right)\right]
$$

- examples for $D=3$:

$$
\begin{aligned}
& \operatorname{alr}(\mathbf{x})=\left[y_{1} ; y_{2}\right]=\left[\ln \frac{x_{1}}{x_{3}} ; \ln \frac{x_{2}}{x_{3}}\right] \\
& \mathbf{x}=\frac{\left[\exp \left(y_{1}\right) ; \exp \left(y_{2}\right) ; 1\right]}{\exp \left(y_{1}\right)+\exp \left(y_{2}\right)+1} \\
& \operatorname{clr}_{i}(\mathbf{x})=z_{i}=\ln \frac{x_{i}}{\sqrt[3]{x_{1} x_{2} x_{3}}} \\
& x_{i}=\frac{\exp \left(z_{i}\right)}{\exp \left(z_{1}\right)+\exp \left(z_{2}\right)+\exp \left(z_{3}\right)} \\
& \operatorname{ilr}_{V}(\mathbf{x})=\left[\frac{1}{\sqrt{2}} \ln \frac{x_{2}}{x_{3}} ; \frac{1}{\sqrt{6}} \ln \frac{x_{1}^{2}}{x_{2} x_{3}}\right] \\
& \mathbf{V}=\left(\begin{array}{cc}
0 & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}}
\end{array}\right)
\end{aligned}
$$

Statistics

Descriptive statistics

Take \mathbf{X} as a compositional data set, with N rows (individuals) and D columns (compositional variables). Notation $* \operatorname{lr}$ means one of the log-ratio transforms.
center (repl. average)
$\operatorname{Mean}_{A}[\mathbf{X}]=\operatorname{clr}^{-1}(\operatorname{Mean}[\ln \mathbf{X}])=* \operatorname{lr}^{-1}(\operatorname{Mean}[* \operatorname{lr}(\mathbf{X})])$

- centering: $\mathbf{X}^{\prime}=\mathbf{X} \ominus \operatorname{Mean}_{A}[\mathbf{X}]$
variation matrix (repl. correlation) $\mathbf{T}=\left[\tau_{i j}\right]$ with

$$
\tau_{i j}=\operatorname{Var}\left[\ln \frac{x_{i}}{x_{j}}\right]
$$

- if $\tau_{i j} \rightarrow 0$, then $\ln \left(x_{i} / x_{j}\right) \approx$ constant, then x_{i} and x_{j} proportional
- larger $\tau_{i j}$, less proportional x_{i} and x_{j}
lr-variance matrix (repl. covariance) $\operatorname{Var}[\operatorname{lr}(\mathbf{X})]$ (no back-transformation, difficult to interpet)

Compositional biplot

Best 2D simultaneous representation of data variability and relationships between variables; linked to principal components of the covariance matrix of a centered clrtransformed data set:

- warning: do not interpret rays; focus on links
- short link: small $t_{i j}, x_{i}$ and x_{j} proportional (FH)
- 3 separate, very long rays: subcomposition defining a high-variance ternary diagram (ABG)
- collinear links: subcomposition showing a onedimensional pattern (AFH, AEG or CDE)
- orthogonal links: the two subcompositions are uncorrelated (AFH vs. CDE)

Normal inference on the simplex

Normal on the simplex: normal distribution of a *lr-transformed composition, with parameters: a central composition \mathbf{x} and a dispersion (positive-semidefinite symmetric) matrix $\boldsymbol{\Sigma}$ of eigendecomposition $\boldsymbol{\Sigma}=\mathbf{V} \cdot \boldsymbol{\Lambda} \cdot \mathbf{V}^{t}$:

$$
\begin{aligned}
\mathbf{x} \sim \mathcal{N}_{\mathcal{S}}^{D}(\mathbf{m}, \boldsymbol{\Sigma}) & \Leftrightarrow-2 \ln f(\mathbf{x} \mid \mathbf{m}, \boldsymbol{\Sigma})=(D-1) \ln (2 \pi) \\
& +\sum_{i=1}^{D-1} \ln \lambda_{i} \quad+\quad \operatorname{ilr}_{V}(\mathbf{x} \ominus \mathbf{m}) \cdot \mathbf{\Lambda}^{-1} \cdot \operatorname{ilr}_{V}^{t}(\mathbf{x} \ominus \mathbf{m})
\end{aligned}
$$

where $\operatorname{ilr}_{V}(\cdot)$ is the ilr with matrix \mathbf{V} giving the eigenvectors in columns, and λ_{i} are the diagonal elements of $\boldsymbol{\Lambda}$, the non-zero eigenvalues of $\boldsymbol{\Sigma}$.

Given \mathbf{m} and $\boldsymbol{\Sigma}$ mean composition and dispersion matrix (theoretical or estimated)

- Regions on a ternary diagram $(D=3)$: ellipses, centered on \mathbf{m}, with principal axes along the eigenvectors of the columns of \mathbf{V}, semiaxes $\sqrt{\lambda_{i}}$ and radius r :
- $(1-\alpha)$-probability regions for observations, $r=\sqrt{\chi_{\alpha}^{2}(2)}$
- $(1-\alpha)$-confidence regions on the mean, $r=$ $\sqrt{\mathcal{F}_{\alpha}(2, N-2) \cdot 2 /(N-2)}$.
- Test statistic on equivalence of population of two groups, with \mathbf{m}_{i} and $\boldsymbol{\Sigma}_{i}$ center and dispersion in group i :

$$
Q(\mathbf{X})=N \ln \left|\boldsymbol{\Sigma}_{0}\right|-N_{1} \ln \left|\boldsymbol{\Sigma}_{1}\right|-N_{2} \ln \left|\boldsymbol{\Sigma}_{2}\right| \sim \chi^{2}(\nu)
$$

1. $=$ center, $=$ dispersion: $\nu=D(D-1) / 2$, and $\boldsymbol{\Sigma}_{0}$ the joint covariance matrix (computed as if no groups existed)
2. \neq center,$=$ dispersion: $\nu=(D-1)(D-2) / 2$ and $\boldsymbol{\Sigma}_{0}=\frac{N_{1}}{N} \boldsymbol{\Sigma}_{1}+\frac{N_{2}}{N} \boldsymbol{\Sigma}_{2}$ the pooled covariance matrix
3. $=$ center, \neq dispersion: $\nu=(D-1)$; see lecture notes or book for $\boldsymbol{\Sigma}_{0}$ expression;
$\ln |\boldsymbol{\Sigma}|=\log$-determinant, computed as the sum of logs of the non-zero eigenvalues of $\boldsymbol{\Sigma}$.

Most basic references

Grounding book: Aitchison, J. (1986) The statistical analysis of compositional data. Reprinted in 2003 by The Blackburn Press.

General paper: Pawlowsky-Glahn, V. (2003) Statistical modelling in coordinates. In: Proceedings of the 1st CoDaWork.

Lecture notes: Pawlowsky-Glahn, V., Egozcue, J.J. and Tolosana-Delgado, R. (2007) Lecture notes on compostional data analysis
http://hdl.handle.net/10256/297
Ongoing research several CoDaWork proceedings, available online at:
http://dugi-doc.udg.edu/handle/10256/150

