Simplicial Indicator Kriging

Dr. Raimon Tolosana-Delgado

raimon.tolosana@geo.uni-goettingen.de

Department of Sedimentology and Environmental Geology University of Göttingen, Germany

China University of Geosciences Wuhan, China, September 5-6, 2007

- presentation
 - a case study: assessing water quality
 - Indicator Kriging (IK): interpolating uncertain categories
 - summary
- simplicial Indicator Kriging
 - variography of the multinomial variable
 - estimating probability vectors of multinomial variables
 - the scale of a probability vector
 - geostatistics with the coordinates
 - obtention of the final probability vector
 - summary
- properties of sIK and relations with IK
 - properties of IK
 - relation between coordinates and disjunctive indicators
 - case study simplifications
- 4 conclusion

water quality assessment: an online control system

XACQA: on-line water quality control system

- basin NE Barcelona (eastern Spain)
- Mediterranean climate
- main river < 5 m²/s. 55km long, 0-1000 m above sea level
- an online station, to control Waste-Water Treating Plant effluent (dumps into a *riera*)
- 17000 inhabitants
- chemical industry

location

outline presentation simplicial IK properties conclusion case study indicator kriging summary

outline presentation simplicial IK properties conclusion case study indicator kriging summary

water quality assessment: a particular case

measured variables

- conductivity, pH, ammonium, (temperature, O₂, . . .)
- main interest: potential of ammonia production
- ammonia (NH₃): lethal (fishes, macroinvertebrates), but volatile
- ammonium (NH₄⁺): much less dangerous on itself, but

$$NH_4^+ + H_2O \Rightarrow NH_3 + H_3O^+ \qquad K_a = \frac{[NH_3] \cdot [H_3O^+]}{[NH_4^+]} = f(T_w)$$

$$HCO_3^- + H_2O \implies CO_3^= + H_3O^+ + H_2O_3^- + H_2O \implies H_2CO_3 + OH^-$$

basin rich in HCO₃ ⇒ pH buffering ⇒ NH₃ controlled

outline presentation simplicial IK properties conclusion case study indicator kriging summary

obtaining the data set of water quality categories data available: ammonium concentration, pH, conductivity regularization: 12h geometric averages (pH arithmetic) thresholding NHA 0.05 1.00 4.00 표-8.5 14.0 0.0 conductivity 2500 1000 final quality category: the worse

geostatistics for categorical variables

treatment: Indicator Kriging (IK; Journel, 1983)

(re)define the categories as indicator functions

- compute variograms, fit models, interpolate
- interpret results as probabilities: $\hat{l}_i(x_0) \Rightarrow \Pr[Z(x_0) < z_i] ext{ or } \hat{J}_i(x_0) \Rightarrow \Pr[Z(x_0) \in A_i]$

treatment: Indicator Kriging (IK; Journel, 1983)

(re)define the categories as indicator functions

$$J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) < z_i \ 0 & ext{otherwise} \end{array}
ight. \quad J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) \in \mathcal{A}_i \ 0 & ext{otherwise} \end{array}
ight.$$

- compute variograms, fit models, interpolate
- interpret results as probabilities: $\hat{l}_i(x_0) \Rightarrow \Pr[Z(x_0) < z_i] \text{ or } \hat{J}_i(x_0) \Rightarrow \Pr[Z(x_0) \in A_i]$

problems: practical and theoretical

- interpolations \hat{l}_i are not ordered (\Rightarrow ad-hoc corrections)
- \hat{J}_i are negative, or sum \neq one
- variogram/covariance systems are difficult to model

treatment: Indicator Kriging (IK; Journel, 1983)

(re)define the categories as indicator functions

- compute variograms, fit models, interpolate
- interpret results as probabilities: $\hat{l}_i(x_0) \Rightarrow \Pr[Z(x_0) < z_i] \text{ or } \hat{J}_i(x_0) \Rightarrow \Pr[Z(x_0) \in A_i]$

problems: practical and theoretical

- interpolations \hat{l}_i are not ordered (\Rightarrow ad-hoc corrections)
- \hat{J}_i are negative, or sum \neq one
- variogram/covariance systems are difficult to model

geostatistics for categorical variables

treatment: Indicator Kriging (IK; Journel, 1983)

(re)define the categories as indicator functions

$$J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) < z_i \ 0 & ext{otherwise} \end{array}
ight. \quad J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) \in A_i \ 0 & ext{otherwise} \end{array}
ight.$$

- compute variograms, fit models, interpolate
- interpret results as probabilities: $\hat{I}_i(x_0) \Rightarrow \Pr[Z(x_0) < z_i] \text{ or } \hat{J}_i(x_0) \Rightarrow \Pr[Z(x_0) \in A_i]$

problems: practical and theoretical

- interpolations \hat{l}_i are not ordered (\Rightarrow ad-hoc corrections)
- \hat{J}_i are negative, or sum \neq one
- variogram/covariance systems are difficult to model
- the scale of I (or J) is NOT the scale of $Pr[Z(x_0) \in A_i]$

variograms are difficult

variograms of **J** bound to:

- sum to 0 by rows
- sum to 0 by columns
- sill condition, $c_{ii} = \bar{p}_i \delta_{ij} - \bar{p}_i \bar{p}_j$
- positive definite

conjecture on variograms of I (Matheron, 1971)

$$\mathbf{I} = \mathbf{L} \cdot \mathbf{J} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

relation between cumulative and disjoint indicators

Proposition:

kriging transformed vectors is transforming kriged vectors

- IF: vector random functions: **Z** and **Y** (dim. P), with $Z = T \cdot Y$
- transformation: T a (P, P)-full rank matrix (linear transformation)
- covariance models C^z, C^y, consistent if $\mathbf{C}^{z}(h) = \mathbf{T} \cdot \mathbf{C}^{y}(h) \cdot \mathbf{T}^{t}$
- THEN: cokriging predictors also fulfill $\hat{\mathbf{z}}_0 = \mathbf{T} \cdot \hat{\mathbf{y}}_0$
- linear operators commute; Myers (1982-84, Math. Geol.)

$$egin{array}{cccc} \mathbf{Y} & \longleftarrow T \longrightarrow & \mathbf{Z} & \downarrow & \downarrow & \\ cokriging & (C_{ij} \ consistent) & cokriging & \downarrow & \downarrow & \downarrow \\ \hat{\mathbf{y}} & \longleftarrow T \longrightarrow & \hat{\mathbf{z}} & \hat{\mathbf{z}} & \end{array}$$

relation between cumulative and disjoint indicators

$$\mathbf{I} = \mathbf{L} \cdot \mathbf{J} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

- no difference between cokriging I and J
- $\hat{\mathbf{l}}$ has order violations $\iff \hat{\mathbf{J}}$ has negative values

$$\mathbf{I} = \mathbf{L} \cdot \mathbf{J} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

- no difference between cokriging I and J
- $\hat{\mathbf{l}}$ has order violations $\iff \hat{\mathbf{J}}$ has negative values
- Î does not take any profit of the ordering information!
- order corrections do not symmetrically treat classes

$$\mathbf{I} = \mathbf{L} \cdot \mathbf{J} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

- no difference between cokriging I and J
- $\hat{\mathbf{l}}$ has order violations $\iff \hat{\mathbf{J}}$ has negative values
- Î does not take any profit of the ordering information!
- order corrections do not symmetrically treat classes

summary

- goal: assess water quality
 - lots of variables, irregular time series
 - several chemical equilibria involved
 - NH₃ from sewers, controlled by pH (not buffered, lack of carbonates)
 - problem simplified to 4 water quality categories (ordered)

summary

- goal: assess water quality
 - lots of variables, irregular time series
 - several chemical equilibria involved
 - NH₃ from sewers, controlled by pH (not buffered, lack of carbonates)
 - problem simplified to 4 water quality categories (ordered)
- classical method: Indicator Kriging
 - variogram/covariance functions difficult to model
 - very often negative interpolations
 - without cokriging, almost never summing up to 1
 - can we trust the apparently valid results? and the corrected results?

simplicial IK in a nut

two basic principles

- $\mathbf{J} = [J_1, \dots J_D]$: multinomial variable; interest in its parameter \mathbf{p}
- respect the scale of the interpolated object (compositional scale)

five-step algorithm

- first look at **J** structure (variogram: nugget, sill, range)
- estimate $p_i(x_n)$ at sampled locations: $\hat{\mathbf{p}}(x_n) = \mathbf{A} \cdot \mathbf{J}(x_n)$
- orepresent $\mathbf{p}(x_n) = [p_1, p_2, \dots p_D]$ adequately in its scale (apply log-ratio transformations)
- compute variograms, fit models, interpolate, in transformed scale
- extract desired probabilities from interpolations

simplicial IK in a nut

two basic principles

- $\mathbf{J} = [J_1, \dots J_D]$: multinomial variable; interest in its parameter \mathbf{p}
- respect the scale of the interpolated object (compositional scale)

five-step algorithm

- ofirst look at J structure (variogram: nugget, sill, range)
- **2** estimate $p_i(x_n)$ at sampled locations: $\hat{\mathbf{p}}(x_n) = \mathbf{A} \cdot \mathbf{J}(x_n)$
- **o** represent $\mathbf{p}(x_n) = [p_1, p_2, \dots p_D]$ adequately in its scale (apply log-ratio transformations)
- compute variograms, fit models, interpolate, in transformed scale
- extract desired probabilities from interpolations

simplicial IK in a nut

two basic principles

- $\mathbf{J} = [J_1, \dots J_D]$: multinomial variable; interest in its parameter \mathbf{p}
- respect the scale of the interpolated object (compositional scale)

five-step algorithm

- ofirst look at **J** structure (variogram: nugget, sill, range)
- **2** estimate $p_i(x_n)$ at sampled locations: $\hat{\mathbf{p}}(x_n) = \mathbf{A} \cdot \mathbf{J}(x_n)$
- **o** represent $\mathbf{p}(x_n) = [p_1, p_2, \dots p_D]$ adequately in its scale (apply log-ratio transformations)
- compute variograms, fit models, interpolate, in transformed scale
- extract desired probabilities from interpolations multinomial! $Pr[Z(x_n) \in A_i] = \hat{p}_i(x_0)$

variography of disjunctive indicators (step 1)

estimation of **p** at sampled locations (step 2)

estimation of **p** at sampled locations (step 2)

estimation of **p** at sampled locations (step 2)

computing coordinates (step 3)

reviewing scale and sample space of compositional data

- compositions can be freely closed: $\mathbf{x} \equiv \mathcal{C}[\mathbf{x}] = \mathbf{x}/sum(\mathbf{x})$
- compositions convey only relative information
- lacktriangle sample space, the D-part simplex (\mathcal{S}^D), Euclidean space
- orthonormal basis and coordinates

$$\boldsymbol{\xi} = \boldsymbol{\Psi} \cdot \ln \mathbf{x} \quad \Longleftrightarrow \quad \mathbf{x} = \mathcal{C} \left[\exp(\left(\boldsymbol{\Psi}^t \cdot \boldsymbol{\xi} \right) \right]$$

relevance for **p**

C: likelihood vectors
 ≡ probability vectors

$$\mathcal{C}[3,2,1] = \frac{1}{3+2+1}[3,2,1] = \left\lceil \frac{1}{2}, \frac{1}{3}, \frac{1}{6} \right\rceil \equiv [3:2:1]$$

- \bullet \oplus , discrete Bayes Theorem; $||\cdot||_a$: information measure
- ξ are log-contrasts (logistic regression)

computing coordinates (step 3)

reviewing scale and sample space of compositional data

- compositions can be freely closed: $\mathbf{x} \equiv \mathcal{C}[\mathbf{x}] = \mathbf{x}/sum(\mathbf{x})$
- compositions convey only relative information
- sample space, the *D*-part simplex (S^D) , Euclidean space
- orthonormal basis and coordinates $\xi = \Psi \cdot \ln \mathbf{x} \iff \mathbf{x} = \mathcal{C} \left[\exp(\left(\Psi^t \cdot \xi \right) \right]$

relevance for **p**

C: likelihood vectors
 ≡ probability vectors

$$\mathcal{C}[3,2,1] = \frac{1}{3+2+1}[3,2,1] = \left[\frac{1}{2},\frac{1}{3},\frac{1}{6}\right] \equiv [3:2:1]$$

- \bullet \oplus , discrete Bayes Theorem; $||\cdot||_a$: information measure
- ξ are log-contrasts (logistic regression)

computing coordinates (step 3)

reviewing scale and sample space of compositional data

- compositions can be freely closed: $\mathbf{x} \equiv \mathcal{C}[\mathbf{x}] = \mathbf{x}/\text{sum}(\mathbf{x})$
- compositions convey only relative information
- sample space, the *D*-part simplex (S^D) , Euclidean space
- orthonormal basis and coordinates

$$oldsymbol{\xi} = oldsymbol{\Psi} \cdot \ln oldsymbol{x} \quad \Longleftrightarrow \quad oldsymbol{x} = \mathcal{C} \left[\exp(\left(oldsymbol{\Psi}^t \cdot oldsymbol{\xi}
ight)
ight]$$

relevance for **p**

C: likelihood vectors
 ≡ probability vectors

$$\mathcal{C}[3,2,1] = \frac{1}{3+2+1}[3,2,1] = \left\lceil \frac{1}{2}, \frac{1}{3}, \frac{1}{6} \right\rceil \equiv [3:2:1]$$

- ⊕, discrete Bayes Theorem; || · ||_a: information measure
- ξ are log-contrasts (logistic regression)

computing coordinates (step 3)

reviewing scale and sample space of compositional data

- compositions can be freely closed: $\mathbf{x} \equiv \mathcal{C}[\mathbf{x}] = \mathbf{x}/\text{sum}(\mathbf{x})$
- compositions convey only relative information
- sample space, the *D*-part simplex (S^D), Euclidean space
- orthonormal basis and coordinates

$$oldsymbol{\xi} = oldsymbol{\Psi} \cdot \ln oldsymbol{\mathsf{x}} \quad \Longleftrightarrow \quad oldsymbol{\mathsf{x}} = \mathcal{C} \left[\exp \left(oldsymbol{\Psi}^t \cdot oldsymbol{\xi}
ight)
ight]$$

relevance for **p**

C: likelihood vectors ≡ probability ve

$$C[3,2,1] = \frac{1}{3+2+1}[3,2,1]$$

- lackbox \oplus , discrete Bayes Theorem; $||\cdot||_a$: in
- ξ are log-contrasts (logistic regression)

ilr coordinate matrix

$$\Psi = \begin{pmatrix} \frac{+2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} \\ 0 & \frac{+1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}$$

computing coordinates (step 3)

reviewing scale and sample space of compositional data

- compositions can be freely closed: $\mathbf{x} \equiv \mathcal{C}[\mathbf{x}] = \mathbf{x}/sum(\mathbf{x})$
- compositions convey only relative information
- sample space, the *D*-part simplex (S^D), Euclidean space
- orthonormal basis and coordinates

$$oldsymbol{\xi} = oldsymbol{\Psi} \cdot \ln oldsymbol{x} \quad \Longleftrightarrow \quad oldsymbol{x} = \mathcal{C} \left[\exp \left(oldsymbol{\Psi}^t \cdot oldsymbol{\xi}
ight)
ight]$$

relevance for p

ullet C: likelihood vectors \equiv probability vectors

$$\mathcal{C}[3,2,1] = \frac{1}{3+2+1}[3,2,1] = \left\lceil \frac{1}{2}, \frac{1}{3}, \frac{1}{6} \right\rceil \equiv [3:2:1]$$

- \bullet \oplus , discrete Bayes Theorem; $||\cdot||_a$: information measure
- ξ are log-contrasts (logistic regression)

outline presentation simplicial IK properties conclusion variography estimation scale geostatistics probability summary

geostatistics on coordinates (step 4)

review of geostatistics for compositions

- alr ⇒ analyse ⇒ back-trasform (Pawlowsky-Glahn and Olea, 2004)
- $\bullet \ \ \text{compute coordinates} \Rightarrow \text{analyse} \Rightarrow \text{apply to the basis}$
 - unbiased, $E_{\mathcal{S}}[\hat{\mathbf{z}}_0] = E_{\mathcal{S}}[\mathbf{Z}_0]$
 - minimal error variance, or minimal expected distance $d_A(\hat{\boldsymbol{z}}_0,\boldsymbol{Z}_0)$
- proposition ⇒ results DO NOT depend on the basis
 - any change of basis is a full-rank linear transformation

outline presentation simplicial IK properties conclusion variography estimation scale geostatistics probability summary

variography of coordinates (step 4)

coordinate variography

- easier to model: less components
- positive definiteness
- no further conditions

- **o** interpolated $\hat{\mathbf{p}}_0 \Rightarrow \text{apply to the basis: } \hat{\mathbf{p}}_0 = \mathcal{C} \left[\exp \left(\mathbf{\Psi} \cdot \hat{\mathbf{p}}_0 \right) \right]$
- 2 sought probability: $\Pr[Z_0 \in A_i] = (\hat{\mathbf{p}}_0)_i$

- **1** interpolated $\hat{\mathbf{p}}_0 \Rightarrow \text{apply to the basis: } \hat{\mathbf{p}}_0 = \mathcal{C} \left[\exp \left(\mathbf{\Psi} \cdot \hat{\mathbf{p}}_0 \right) \right]$
- **2** sought probability: $\Pr[Z_0 \in A_i] = (\hat{\mathbf{p}}_0)_i$

- **1** interpolated $\hat{\mathbf{p}}_0 \Rightarrow \text{apply to the basis: } \hat{\mathbf{p}}_0 = \mathcal{C} \left[\exp \left(\mathbf{\Psi} \cdot \hat{\mathbf{p}}_0 \right) \right]$
- 2 sought probability: $\Pr[Z_0 \in A_i] = (\hat{\mathbf{p}}_0)_i$

information measure: Aitchison norm $\|\hat{\mathbf{p}}_0\|_a$ scaled in [0.5, 3]

- **1** interpolated $\hat{\mathbf{p}}_0 \Rightarrow \text{apply to the basis: } \hat{\mathbf{p}}_0 = \mathcal{C} \left[\exp \left(\mathbf{\Psi} \cdot \hat{\mathbf{p}}_0 \right) \right]$
- 2 sought probability: $\Pr[Z_0 \in A_i] = (\hat{\mathbf{p}}_0)_i$

information measure: Aitchison norm $\|\hat{\mathbf{p}}_0\|_a$ scaled in [0.5, 3]

- $||\hat{\mathbf{p}}_0||_a \longrightarrow 0 \Leftrightarrow \hat{\mathbf{p}}_0 \longrightarrow \mathbf{n} \Leftrightarrow Z_0$ less certain

- **1** interpolated $\hat{\mathbf{p}}_0 \Rightarrow \text{apply to the basis: } \hat{\mathbf{p}}_0 = \mathcal{C} \left[\exp \left(\mathbf{\Psi} \cdot \hat{\mathbf{p}}_0 \right) \right]$
- 2 sought probability: $\Pr[Z_0 \in A_i] = (\hat{\mathbf{p}}_0)_i$

information measure: Aitchison norm $||\hat{\mathbf{p}}_0||_a$ scaled in [0.5, 3]

- $||\hat{\mathbf{p}}_0||_a \longrightarrow 0 \Leftrightarrow \hat{\mathbf{p}}_0 \longrightarrow \mathbf{n} \Leftrightarrow Z_0$ less certain
- $||\hat{\mathbf{p}}_0||_a \longrightarrow +\infty \Leftrightarrow (\hat{\mathbf{p}}_0)_i \longrightarrow 0 \Leftrightarrow Z_0$ more certain $(A_i \text{ impossible})$

outline presentation simplicial IK properties conclusion variography estimation scale geostatistics probability summary

summary

- simplicial indicator kriging algorithm
 - variography of disjunctive indicators
 - local estimation of **p** through sharing matrix
 - representation of p in log-ratio coordinates
 - geostatistics of the coordinates
 - obtention of probabilities: application of interpolated coordinates to the basis
- simplicial indicator kriging advantadges
 - old software is useful, estimation of the average of p
 - ② opportunity to include assessment of reliability (instrumental error vs. unclear classification, local vs. global ⇒ GIS potential)
 - interpretable coordinates: Bayesian addition of information
 - easier modeling of variograms in coordinates; invertible cokriging systems
 - final **p** estimates always valid: no correction needed

outline presentation simplicial IK properties conclusion variography estimation scale geostatistics probability summary

summary

- simplicial indicator kriging algorithm
 - variography of disjunctive indicators
 - local estimation of p through sharing matrix
 - representation of p in log-ratio coordinates
 - geostatistics of the coordinates
 - obtention of probabilities: application of interpolated coordinates to the basis
- simplicial indicator kriging advantadges
 - old software is useful, estimation of the average of p
 - ② opportunity to include assessment of reliability (instrumental error vs. unclear classification, local vs. global ⇒ GIS potential)
 - interpretable coordinates: Bayesian addition of information
 - easier modeling of variograms in coordinates; invertible cokriging systems
 - final p estimates always valid; no correction needed

properties of simplicial indicator kriging

summary of properties of sIK already seen

- estimator is BLU Estimator:
 - Best: minimal (metric) variance,
 - Linear transformation of observed data
 - Unbiased: expected estimation = expected true value
 - ... in a compositional sense
- results are always valid probability vectors
- independent of the working basis

the simple sharing matrix case: coordinates vs. indicators

- \bullet observed \mathbf{J}_n at location \mathbf{x}_n
- sharing matrix:

$$\hat{\mathbf{p}}_n = \mathbf{A} \cdot \mathbf{J}_n;$$
 $\mathbf{A} = \begin{pmatrix} 0.950 & 0.025 & 0.025 \\ 0.025 & 0.950 & 0.025 \\ 0.025 & 0.025 & 0.950 \end{pmatrix}$

$$\hat{p}_i = \left\{ egin{array}{ll} 1 - lpha & J_i = 1, \\ lpha/(D-1) & J_i = 0, \end{array}
ight. \quad lpha(= 0.05) ext{ prob. missclassification}$$

- coordinates:
 - of a generic vector of probabilities

$$\hat{\boldsymbol{\pi}}_n = \boldsymbol{\Psi} \cdot \ln \left(\mathbf{A} \cdot \mathbf{J}_n \right) = \boldsymbol{\Psi} \cdot \mathbf{B} \cdot \mathbf{J}_n, \qquad \mathbf{B} = (\ln \mathbf{A})$$

of the simple sharing matrix case

$$\hat{\boldsymbol{\pi}}_n = \beta \cdot \boldsymbol{\Psi} \cdot \boldsymbol{J}_n, \qquad \beta = \ln \frac{(1-\alpha)(D-1)}{\alpha}$$

the simple sharing matrix case: geostatistics

$$\hat{\boldsymbol{\pi}}_n = \beta \cdot \boldsymbol{\Psi} \cdot \boldsymbol{J}_n, \qquad \beta = \ln \frac{(1 - \alpha)(D - 1)}{\alpha}$$

linear, invertible relationship \Rightarrow relations in geostatistics:

consistency of covariance models:

$$\mathbf{\Gamma}^{\pi}(h) = \beta^2 \cdot \mathbf{\Psi} \cdot \mathbf{\Gamma}^{J}(h) \cdot \mathbf{\Psi}^{t}$$

relation between predictions:

$$\hat{\boldsymbol{\pi}}_0 = \boldsymbol{\beta} \cdot \boldsymbol{\Psi} \cdot \hat{\mathbf{J}}_0 \longleftrightarrow \hat{\mathbf{J}}_0 = \frac{1}{\boldsymbol{\beta}} \cdot \boldsymbol{\Psi}^t \cdot \hat{\boldsymbol{\pi}}_0 + \frac{1}{D} \mathbf{1}$$

variography

variograms for indicators and coordinates consistent:

$$\mathbf{\Gamma}^{\pi}(h) = \beta^2 \cdot \mathbf{\Psi} \cdot \mathbf{\Gamma}^{J}(h) \cdot \mathbf{\Psi}^{t}$$

- no need to recompute them!
- easier to model in coordinates: less components, NOT bound to:
 - sum to 0 by rows
 - sum to 0 by columns
 - sill condition, $c_{ii} = \bar{p}_i \delta_{ii} - \bar{p}_i \bar{p}_i$

(as J does)

checking what happened with indicator variograms (2002)

relations between cokriging predictions

- proposition \Rightarrow results for $\hat{\pi}_0$ are equivalent:
 - cokriging D-1 coordinates directly $(\hat{\pi}_0)$
 - cokriging D indicators (\hat{j}_0) and transforming them through

$$\hat{\boldsymbol{\pi}}_0 = \boldsymbol{\beta} \cdot \boldsymbol{\Psi} \cdot \boldsymbol{J}_0$$

if we apply kriged results to the basis used:

$$\hat{\mathbf{p}}_0 = \mathcal{C}\left(\exp\left(\mathbf{\Psi}^t\cdot\hat{oldsymbol{\pi}}_0
ight)
ight) = \mathcal{C}\left(\exp\left(eta\cdot\hat{\mathbf{j}}_0
ight)
ight)$$

- always valid: positive, summing up to one
- no $\Psi \Longrightarrow$ choice of basis modifies nothing
- wait to fix β (or $\alpha = 0.05$) until the end
- only for cokriging!
- if cokriging is too complex?
 - \bigcirc kriging j_i individually
 - 2 combine them with B

relations between cokriging predictions

- proposition \Rightarrow results for $\hat{\pi}_0$ are equivalent:
 - cokriging D-1 coordinates directly $(\hat{\pi}_0)$
 - cokriging D indicators (\hat{j}_0) and transforming them through

$$\hat{\boldsymbol{\pi}}_0 = \beta \cdot \boldsymbol{\Psi} \cdot \boldsymbol{\mathsf{J}}_0$$

• if we apply kriged results to the basis used:

$$\hat{\mathbf{p}}_0 = \mathcal{C}\left(\exp\left(\mathbf{\Psi}^t \cdot \hat{\boldsymbol{\pi}}_0\right)\right) = \mathcal{C}\left(\exp\left(\beta \cdot \hat{\mathbf{j}}_0\right)\right)$$

- always valid: positive, summing up to one
- no $\Psi \Longrightarrow$ choice of basis modifies nothing
- wait to fix β (or $\alpha = 0.05$) until the end

relations between cokriging predictions

- proposition \Rightarrow results for $\hat{\pi}_0$ are equivalent:
 - cokriging D-1 coordinates directly $(\hat{\pi}_0)$
 - cokriging D indicators (\hat{j}_0) and transforming them through

$$\hat{\boldsymbol{\pi}}_0 = \beta \cdot \boldsymbol{\Psi} \cdot \boldsymbol{\mathsf{J}}_0$$

• if we apply kriged results to the basis used:

$$\hat{\mathbf{p}}_0 = \mathcal{C}\left(\exp\left(\mathbf{\Psi}^t \cdot \hat{\boldsymbol{\pi}}_0\right)\right) = \mathcal{C}\left(\exp\left(\beta \cdot \hat{\mathbf{j}}_0\right)\right)$$

- always valid: positive, summing up to one
- no $\Psi \Longrightarrow$ choice of basis modifies nothing
- wait to fix β (or $\alpha = 0.05$) until the end
- only for cokriging!
- if cokriging is too complex?
 - wriging *j_i* individually
 - \bigcirc combine them with β

relations between cokriging predictions

- proposition \Rightarrow results for $\hat{\pi}_0$ are equivalent:
 - cokriging D-1 coordinates directly $(\hat{\pi}_0)$
 - cokriging D indicators (\hat{j}_0) and transforming them through

$$\hat{\boldsymbol{\pi}}_0 = \beta \cdot \boldsymbol{\Psi} \cdot \boldsymbol{\mathsf{J}}_0$$

• if we apply kriged results to the basis used:

$$\hat{\mathbf{p}}_0 = \mathcal{C}\left(\exp\left(\mathbf{\Psi}^t\cdot\hat{oldsymbol{\pi}}_0
ight)
ight) = \mathcal{C}\left(\exp\left(eta\cdot\hat{\mathbf{j}}_0
ight)
ight)$$

- always valid: positive, summing up to one
- no $\Psi \Longrightarrow$ choice of basis modifies nothing
- wait to fix β (or $\alpha = 0.05$) until the end
- only for cokriging!
- if cokriging is too complex?
 - \bigcirc kriging j_i individually
 - \bigcirc combine them with β

classic co-IK

$$\hat{\mathbf{n}} = \sum_{n=1}^{N} \mathbf{\Lambda}_n \cdot \mathbf{J}_n$$

- many data to estimate variograms, strong conditions on the valid models
- negative components
- needed corrections

simplicial co-IK

$$\hat{\boldsymbol{\pi}}_0 = \sum_{n=1}^N \boldsymbol{\Lambda}_n \cdot \boldsymbol{\pi}_n$$

 many data to estimate variograms

classic IK

$$(\hat{\mathbf{j}}_0)_i = \sum_{n=1}^N \lambda_n \cdot (\mathbf{J}_n)_n$$

- suboptimal
- negative components
- sum \neq 1
- needed corrections
- ignores the variogram problem (does not solve it!)

simplicial Ik

$$\hat{\mathbf{p}}_0 = \mathcal{C} \left[\exp \left(\beta \cdot \hat{\mathbf{j}}_0 \right) \right]$$

classic co-IK

$$\hat{\mathbf{0}} = \sum_{n=1}^{N} \mathbf{\Lambda}_n \cdot \mathbf{J}_n$$

- many data to estimate variograms, strong conditions on the valid models
- negative components
- needed corrections

simplicial co-IK

$$\hat{\boldsymbol{\pi}}_0 = \sum_{n=1}^N \boldsymbol{\Lambda}_n \cdot \boldsymbol{\pi}_n$$

 many data to estimate variograms

classic IK

$$(\hat{\mathbf{j}}_0)_i = \sum_{n=1}^N \lambda_n \cdot (\mathbf{J}_n)_i$$

- suboptimal
- negative components
- sum ≠ 1
- needed corrections
- ignores the variogram problem (does not solve it!)

simplicial IK

$$\hat{\mathbf{p}}_0 = \mathcal{C}\left[\exp\left(\beta \cdot \hat{\mathbf{j}}_0\right)\right]$$

classic co-IK

$$\hat{\mathbf{0}} = \sum_{n=1}^{N} \mathbf{\Lambda}_n \cdot \mathbf{J}_n$$

- many data to estimate variograms, strong conditions on the valid models
- negative components
- needed corrections

simplicial co-IK

$$\hat{\pi}_0 = \sum_{n=1}^N \mathbf{\Lambda}_n \cdot \mathbf{\pi}_n$$

 many data to estimate variograms

classic IK

$$(\hat{\mathbf{j}}_0)_i = \sum_{n=1}^N \lambda_n \cdot (\mathbf{J}_n)_i$$

- suboptimal
- negative components
- sum ≠ 1
- needed corrections
- ignores the variogram problem (does not solve it!)

simplicial IK

$$\hat{\mathbf{p}}_0 = \mathcal{C} \left[\exp \left(\beta \cdot \hat{\mathbf{j}}_0 \right) \right]$$

classic co-IK

$$\hat{\mathbf{0}} = \sum_{n=1}^{N} \mathbf{\Lambda}_n \cdot \mathbf{J}_n$$

- many data to estimate variograms, strong conditions on the valid models
- negative components
- needed corrections

simplicial co-IK

$$\hat{\pi}_0 = \sum_{n=1}^N \mathbf{\Lambda}_n \cdot \boldsymbol{\pi}_n$$

 many data to estimate variograms

classic IK

$$(\hat{\mathbf{j}}_0)_i = \sum_{n=1}^N \lambda_n \cdot (\mathbf{J}_n)_i$$

- suboptimal
- negative components
- sum ≠ 1
- needed corrections
- ignores the variogram problem (does not solve it!)

simplicial IK

$$\hat{\mathbf{p}}_{0} = \mathcal{C}\left[\exp\left(\beta \cdot \hat{\mathbf{j}}_{0}\right)\right]$$

conclusions

- distinguish J (multinomial) from p (its parameter)
- geostatistics on the coordinates of p (as a composition)
 - easier modeling of covariance/variogram structures
 - yield always valid results (also individual kriging)
 - BLUE with respect to a compositional scale
 - interpretable in a Bayesian framework
- geostatistical procedure: not dependent on the preliminary p estimation (β, α, matrix A)
- final cokriging results: not dependent on the basis chosen

more material

further reading

- all the stuff:
 Tolosana-Delgado, R., 2006. Geostatistics for constrained variables: positive data, compositions and probabilities. Application to environmental hazard monitoring. Ph.D. thesis (U. Girona, Spain)
- about simplicial indicator kriging:
 Tolosana-Delgado, R., Pawlowsky-Glahn, V., Egozcue, J. J. Indicator kriging without order relation violations. Mathematical Geology
- using the same technique with positive variables:
 Tolosana-Delgado, R., Pawlowsky-Glahn, V., 2007. Kriging regionalized positive variables revisited: sample space and scale considerations.
 Mathematical Geology, in press

CoDaWork'08: 3rd International Workshop on CoDa

Girona (Spain), May 27 to 30, 2008.

simplicial indicator kriging

Thanks for your attention

statistics for random vectors

the object way: use vectors + linear applications (Eaton, 1983)

- E[Z]: expectation already defined if Z a real random variable
- projections have real values, $P_{\mathbf{u}}(\mathbf{z}) = (\mathbf{z}, \mathbf{u})_A$, with \mathbf{u} a direction
- ullet $E_{\mathcal{S}}[\mathbf{Z}] = \mathbf{m}$ a vector capturing all projections, $E[P_{\mathbf{u}}(\mathbf{Z})] = P_{\mathbf{u}}(\mathbf{m})$
- $Var_{\mathcal{S}}[\mathbf{Z}] = \Sigma$ an endomorphism capturing all pairs of projections, $E[P_{\mathbf{u}}(\mathbf{Z} \ominus \mathbf{m}) \cdot P_{\mathbf{v}}(\mathbf{Z} \ominus \mathbf{m})] = P_{\mathbf{u}}(\Sigma \mathbf{v})$

measures of information in a probability vector

entropy vs. Aitchison norm

Aitchison norm

$$||\mathbf{p}||_{A} = \sqrt{\frac{1}{3} \left(\log^{2} \frac{p_{1}}{p_{2}} + \log^{2} \frac{p_{2}}{p_{3}} + \log^{2} \frac{p_{1}}{p_{3}} \right)}$$

Shannon entropy

$$H = p_1 \log p_1 + p_2 \log p_2 + p_3 \log p_3$$

√ return

measures of information in a probability vector

