
A compositional regression with lost values

Original problem: Blatt, Middleton and Murray (1972) published a plot where
they conveyed ”the probable relationship between grain size and detrital fragment
composition, based on the limited data currently available”. The plot gives, for the
range of grain sizes occurring in nature, the composition on five parts (rock fragments,
poly-crystalline quartz, mono-crystalline quartz, feldspar and mica). Grain size is
given in φ scale, corresponding to the binary log of the inverse diameter. Our goal
here is to fit an Aitchison (1986) trend to this data, by means of a regression. However,
this composition has lots of zeroes, as can be seen in figure 1.
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Figure 1: Data set sampled from the original figure published by Blatt et al. (1972,
p. 301). Legend: rock fragments (dark blue diamonds), poly-crystalline quartz (pink
squares), mono-crystalline quartz (yellow upward-triangles), feldspar (cyan circles)
and mica (dark violet downward-triangles).
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0.Notation: Let the grain size be represented as φ = −log2d (diameter of the
grains). Let φ̄ and σ2

φ be the mean and variance of φ (as classically defined). Let the
5-part composition [Rf , Qp, Qm, F, M ] be denoted by X, and let x̄ be the geometric
mean of X, as corresponds to a composition in the Aitchison (1986) framework.
Recall that the sample space of X is the D = 5-part simplex S

D, which can be given
an Euclidean space structure (Billheimer et al, 2001; Pawlowsy-Glahn and Egozcue,
2001) with the following operations: the Abelian group operation, called perturbation,
is given by x ⊕ y = C(x1y1, . . . , xDyD)t; the scalar multiplication, or powering, by
α ⊙ x = C(xα

1
, . . . , xα

D)t; and the inner product and associated distance by

〈x,y〉A =

D
∑

i=1

clr(x) · clr(y) , d2

A(x,y) =
1

D

∑

i<j

(

ln
xi

xj

− ln
yi

yj

)2

,

where clr(x) = ln x

D
√

x1···xD
, being x,y ∈ S

D, α ∈ R, the operation C(·) closes its

argument to total sum one, and the superindex t marks transposition (Aitchison,
1984; 1986).

1.Posing the problem: We look for a regression trend

xφ = x0 ⊕ φ ⊙ ∆x, (1)

where x0 is the ordinate at the origin and ∆x the slope, both compositions from the
same simplex as x. Alternatively, we may look for an affine linear application

xφ = x0 ⊕ Bφ, (2)

where B : R → S
D a linear application. Of course, these two definitions are equivalent,

if we take Bφ = φ⊙∆x, in words: the image of B is a vector of S
D (characteristic of

B) scaled with φ.

2.The coordinate approach: Following Pawlowsky-Glahn (2003), the Euclidean
structure can be taken into account by working on the coordinates of X in a given
basis of S

D. Every basis can be identified with a set of exhaustive (D − 1) log-ratios.
Since there a lots of zeroes in the data set (figure 1), some log-ratios cannot be
computed. Therefore, they have to be chosen carefully. The proposed basis is

e1 = C (e, 1, 1, 1, 1) e2 = C (1, 1, 1, e, 1) e3 = C (1, 1, 1, 1, e) e4 = C (e, e, 1, 1, 1)

because the coordinates with respect to this basis can be computed with the following
set of log-ratios

ξ1 = ln
Rf

Qp

ξ2 = ln
F

Qm

ξ3 = ln
M

Qm

ξ4 = ln
Qp

Qm

.
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Note that these log-ratios are chosen to maximize the number of cases in which both
the numerator and the denominator were observed.

A classical regression model of each coordinate ξi = αi + βi · φ is straightforward
to implement. The resulting parameters can be applied to the basis, e.g. a = α1 ⊙
e1⊕α2⊙e2⊕α3⊙e3⊕α4⊙e4 to recover a composition. In this way, one can estimate
x0 = a and ∆x = b (Daunis-i-Estadella et al, 2002). The same application can be
done with the predicted values of the regression, thus predicting the composition xφ

for every φ (figure 2)

3.Defining a covariance: Alternatively, we can follow Eaton (1983) and estimate
the parameters of Eq. (2) with a new covariance of x on φ, denoted Σxφ : R → S

D,
and defined as the linear application fulfilling

〈y, Σxφλ〉A = E
[

〈y,x⊖ x̄〉A ·
〈

λ, φ − φ̄
〉]

, (3)

for any vector y ∈ S
D and any scalar λ ∈ R. In the canonical basis of R the matrix

form of Σxφ becomes a composition, denoted by sxφ = Σxφ(1); in words: it is equal
to the image of the canonical basis of R by the function Σxφ.

4.Solving the problem: In the case of Eq. (2), the ”parameters” of the regression
are (Eaton, 1983)

B̂ = ΣxφΣ
−1

φ and x̂0 = x̄ ⊖ B̂φ̄,

with Σφ : R → R a linear application, the variance of φ in Eaton (1983) approach.
In the canonical basis of R, the matrix form of Σφ is exactly [σ2

φ]. As a result, the

operator B̂, which consists of the composition of two linear functions, is expressed as

Σ−1

φ : R → R

φ 1

σ2

φ

φ

Σxφ : R → S
D

λ λ ⊙ sxφ

B : R → → → S
D

φ
(

1

σ2

φ

φ
)

⊙ sxφ.

Therefore, in Eq. (1), the increment vector becomes ∆x = 1

σ2

φ

⊙ sxφ, thanks to the

linear properties of ⊙.
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5.Estimating the covariance (without lost values): Developing Eq. (3) by
introducing the definition of scalar products, one finds

〈y, Σxφλ〉A = E

[

λ(φ − φ̄)
D

∑

i=1

clri(y)(clri(x) − clri(x̄))

]

〈y, λ ⊙ sxφ〉A =

D
∑

i=1

λclri(y)E
[

(φ − φ̄)(clri(x) − clri(x̄))
]

λ · 〈y, sxφ〉A = λ

D
∑

i=1

clri(y)Cov [φ, clri(x)]

λ ·
D

∑

i=1

clri(y) · clri(sxφ) = λ

D
∑

i=1

clri(y)Cov [φ, clri(x)] .

Since this has to be satisfied for any λ ∈ R and any y ∈ S
D, then for i = 1, . . . , D

clri(sxφ) = Cov [φ, clri(x)] ,

which, being a covariance between real variables, can be estimated by standard tech-
niques. As a curiosity, following the principle of working on coordinates of Pawlowsky-
Glahn (2003) we could write sxφ = CovA [φ,x, ] .

6.Estimating the covariance (with lost values): Recall that

clri(sxφ) = Cov [φ · clri(x)] = E [φ, clri(x)] − E [φ] E [clri(x)] .

This implies that, if E [φ] = 0, then

clri(sxφ) = E [φ · clri(x)] = E
[

clri(x
φ)

]

.

This simplification can be done without problem, because φ is in our problem fully
observed, and therefore we can easily center it. Then, we may estimate

clri(sxφ) = E [clri(φ ⊙ x)]

with the theory for estimation of mean compositions in the presence of lost values of
v.d.Boogaart et al. (2006).
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Figure 2: Result of the analysis: with the clr-projection technique (solid lines), with
an ad-hoc basis (alr-type) and estimating the coefficients separately (dashed lines).
Legend: rock fragments (dark blue diamonds), poly-crystalline quartz (pink squares),
mono-crystalline quartz (yellow upward-triangles), feldspar (cyan circles) and mica
(dark violet downward-triangles).

5



7.R Code:

# read data

x = read.table("sedglobalbudget.txt",header=T)

# take grain size, compute its statistics, center it

phi=x[,1]

mphi = mean(phi)

varphi = var(phi)

phi = phi - mphi

# take composition, compute its mean (with losts)

xcomp = acomp(x[,-1])

mx = mean(xcomp)

# retrieve the projection matrix used in the mean computation

dd = sumMissingProjector(xcomp) # as a curiosity, not needed

# compute the covariance

auxx = phi * xcomp

covxphi = mean(auxx)

# compute the regression coefficients (using acomp arithmetic)

slope = (1/varphi) * covxphi

ordinate = mx - mphi * slope

Results are plotted in figure 2.
NOTE: this code needs the library “compositions” in its version for handling

zeroes, as can be downloaded from http://www.stat.boogaart.de/compositions/.

8.Discussion: Figure 2 shows that the fit of the curves obtained in section 2 is
really good, with the single exception of rock fragments and polycrystalline quartz
for low φ values. However, it is much better than the result one would obtain with
classical statistics applied to X or to its standardized version.

Contrarily, the result of sections 3 to 6 is unfortunately poor. A possible expla-
nation to this unexpected, undesirable, behavior might be related to the fact that
the clr-projection approach completely ignores that lost values are ”small”: they are
all considered MAR lost values, while really being BDL. Contrarily, in the simpler
approach the basis has been selected so that the maximum number of zeroes ”go
together”: since the ratio of two BDL’s is nearer to a true MAR, estimation with
these ratios are less affected by the fact that BDL’s are not MAR. Further research is
needed to adequately characterize BDLs and look for unbiased methods of estimate
statistics under their presence.
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