Doing statistics of (grain size) distributions (or why doing it easy if it can be infinitely complicated?)

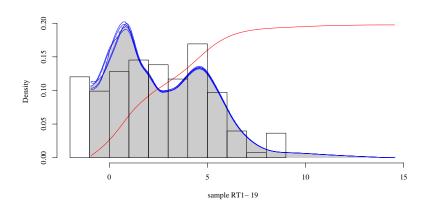
Raimon Tolosana-Delgado

Sedi-Seminar 6 November 2007

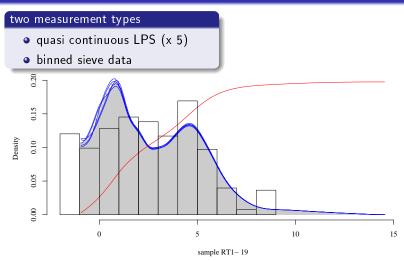
outline

- 1 grain-size distribution characterization
- 2 geometry and statistics of distributions
 - characteristics
 - CoDa analysis
 - Hilbert space
- application
 - generalities
 - a glacial data set from the Aar-Gotthard massif (Alps)
 - the Darss sill data set
- final comments

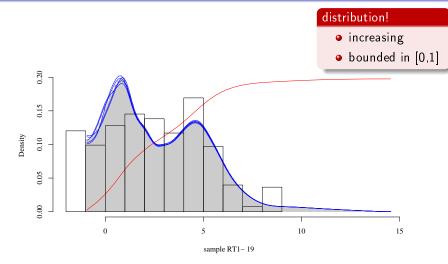
a grain-size distribution example



a grain-size distribution example



a grain-size distribution example



traditional procedure (Folk, 1979; Petrology of Sedimentary Rocks)

- compute the cummulative curve (distribution)
- 2 read some quantiles form the line, and derive distribution measures:
 - central tendency
 - mode: most frequent φ
 - median: ϕ_{50}
 - $\frac{1}{2}(\phi_{16}+\phi_{84})$
 - combined $\frac{1}{3}(\phi_{16} + \phi_{84} + \phi_{50})$

- skewness
- kurtosis

- sorting
 - interquartile range: $\frac{1}{2}(\phi_{75}-\phi_{25})$ (bad)
 - $\frac{1}{2}(\phi_{84}-\phi_{16})$
 - combined $\frac{1}{4}(\phi_{84}-\phi_{16})+\frac{1}{6.6}(\phi_{95}-\phi_{5})$

Argument: statistics require many calculations!

• computers are here to do some dirty work

what must have a curve to be a density?

- it must be positive
- its integral (area under the curve) must be one

what *must* have a curve to be a density?

- it must be positive
- its integral (area under the curve) must be one

what can have/be a distribution?

- several modes vs. one single maximum
- continuous vs. discontinuous
- smooth curve vs. fractal character (extreme irregularity)
- symmetry vs. skewness
- virtually any shape (not just a normal one)

what *must* have a curve to be a density?

- it must be positive
- its integral (area under the curve) must be one

what can have/be a distribution?

- several modes vs. one single maximum
- continuous vs. discontinuous
- smooth curve vs. fractal character (extreme irregularity)
- symmetry vs. skewness
- virtually any shape (not just a normal one)

- ullet a composition is ... a vector $\mathbf{x} = [x_1, \dots x_D]$ with
 - D positive components $(x_i \ge 0)$
 - of constant sum $(\sum x_i = 100)$

- ullet a composition is ... a vector $\mathbf{x} = [x_1, \dots x_D]$ with
 - D positive components $(x_i \ge 0)$
 - of constant sum $(\sum x_i = 100)$
- its sample space is:
 - the set of *possible* measurements
 - the simplex (\mathbb{S}^D), e.g. if D=3 the ternary diagram

- ullet a composition is ... a vector $\mathbf{x} = [x_1, \dots x_D]$ with
 - D positive components $(x_i \ge 0)$
 - of constant sum $(\sum x_i = 100)$
- its sample space is:
 - the set of *possible* measurements
 - the simplex (\mathbb{S}^D) , e.g. if D=3 the ternary diagram
- its scale is:
 - a subjective assessment of the difference between two values
 - a relative one, an increment from 100 ppm to 200 ppm is more significant that from 1000 ppm to 1100 ppm

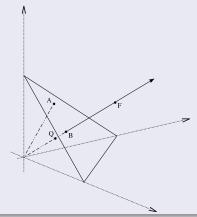
- ullet a composition is ... a vector $\mathbf{x} = [x_1, \dots x_D]$ with
 - D positive components $(x_i \ge 0)$
 - of constant sum $(\sum x_i = 100)$
- its sample space is:
 - the set of *possible* measurements
 - the simplex (\mathbb{S}^D), e.g. if D=3 the ternary diagram
- its scale is:
 - a subjective assessment of the difference between two values
 - a relative one, an increment from 100 ppm to 200 ppm is more significant that from 1000 ppm to 1100 ppm

the Simplex: a meaningful Euclidean space structure

ullet the closure: $\mathcal{C}\left[\cdot\right]:\mathbb{R}_{+}^{D}\longrightarrow\mathbb{S}^{D}:\mathbf{x}'=rac{\mathbf{x}}{\sum x_{i}}$

the Simplex: a meaningful Euclidean space structure

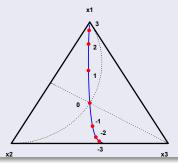
ullet the closure: $\mathcal{C}\left[\cdot
ight]:\mathbb{R}_{+}^{D}\longrightarrow\mathbb{S}^{D}:\mathbf{x}'=rac{\mathbf{x}}{\sum x_{i}}$



- the closure: $\mathcal{C}\left[\cdot\right]:\mathbb{R}_{+}^{D}\longrightarrow\mathbb{S}^{D}:\mathbf{x}'=\frac{\mathbf{x}}{\sum x_{i}}$
- change operation: perturbation $\mathbf{x} \oplus \mathbf{y} = \mathcal{C} [x_1 \cdot y_1, \dots, x_D \cdot y_D]$

- the closure: $\mathcal{C}\left[\cdot\right]:\mathbb{R}_{+}^{D}\longrightarrow\mathbb{S}^{D}:\mathbf{x}'=\frac{\mathbf{x}}{\sum x_{i}}$
- ullet change operation: perturbation $\mathbf{x} \oplus \mathbf{y} = \mathcal{C}\left[x_1 \cdot y_1, \dots, x_D \cdot y_D\right]$
 - ullet "zero", neutral element $\mathbf{n}=[1/D,\dots 1/D]$
 - ullet complement operation: power transformation $\lambda\odot\mathbf{x}=\mathcal{C}\left[x_1^\lambda,\dots,x_D^\lambda
 ight]$

- the closure: $\mathcal{C}\left[\cdot\right]:\mathbb{R}_{+}^{D}\longrightarrow\mathbb{S}^{D}:\mathbf{x}'=\frac{\mathbf{x}}{\sum x_{i}}$
- ullet change operation: perturbation $\mathbf{x} \oplus \mathbf{y} = \mathcal{C}\left[x_1 \cdot y_1, \dots, x_D \cdot y_D\right]$
 - ullet "zero", neutral element $\mathbf{n}=[1/D,\dots 1/D]$
 - ullet complement operation: power transformation $\lambda\odot\mathbf{x}=\mathcal{C}\left[x_1^\lambda,\dots,x_D^\lambda
 ight]$

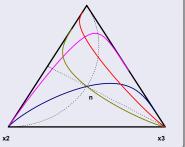


- the closure: $\mathcal{C}\left[\cdot\right]:\mathbb{R}_{+}^{D}\longrightarrow\mathbb{S}^{D}:\mathbf{x}'=\frac{\mathbf{x}}{\sum x_{i}}$
- ullet change operation: perturbation $\mathbf{x}\oplus\mathbf{y}=\mathcal{C}\left[x_1\cdot y_1,\ldots,x_D\cdot y_D
 ight]$
 - ullet "zero", neutral element $\mathbf{n}=[1/D,\dots 1/D]$
 - ullet complement operation: power transformation $\lambda\odot\mathbf{x}=\mathcal{C}\left[x_1^\lambda,\dots,x_D^\lambda
 ight]$
- Aitchison distance: $d_A^2(\mathbf{x}, \mathbf{y}) = \sum_{i>j} \left(\ln \frac{x_i}{y_i} \ln \frac{x_j}{y_j} \right)^2$

- the closure: $\mathcal{C}\left[\cdot\right]:\mathbb{R}_{+}^{D}\longrightarrow\mathbb{S}^{D}:\mathbf{x}'=\frac{\mathbf{x}}{\sum x_{i}}$
- ullet change operation: perturbation $\mathbf{x} \oplus \mathbf{y} = \mathcal{C}\left[x_1 \cdot y_1, \dots, x_D \cdot y_D\right]$
 - "zero", neutral element $\mathbf{n} = [1/D, \dots 1/D]$
 - ullet complement operation: power transformation $\lambda\odot\mathbf{x}=\mathcal{C}\left[x_1^\lambda,\dots,x_D^\lambda
 ight]$
- Aitchison distance: $d_A^2(\mathbf{x}, \mathbf{y}) = \sum_{i>j} \left(\ln \frac{x_i}{y_i} \ln \frac{x_j}{y_j} \right)^2$
 - Aitchison scalar product $\langle \mathbf{x}, \mathbf{y} \rangle_A = \sum_{i>j} \ln \frac{x_i}{y_i} \cdot \ln \frac{x_j}{y_j}$
 - Aitchison norm $||\mathbf{x}||_A = d(\mathbf{n}, \mathbf{x})$

- the closure: $C[\cdot]: \mathbb{R}^D_+ \longrightarrow \mathbb{S}^D: \mathbf{x}' = \frac{\mathbf{x}}{\sum x_i}$
- change operation: perturbation $\mathbf{x} \oplus \mathbf{y} = \mathcal{C} [x_1 \cdot y_1, \dots, x_D \cdot y_D]$
 - "zerd parallel and orthogonal lines
 - comi

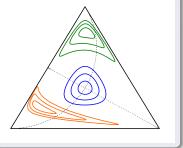
- Aitchison
 - Aitcl
 - Aitcl



on
$$\lambda\odot\mathbf{x}=\mathcal{C}\left[x_1^\lambda,\ldots,x_D^\lambda
ight]$$
 $-\lnrac{x_j}{y_i}\Big)^2$

$$n \frac{x_i}{y_i} \cdot \ln \frac{x_j}{y_j}$$

- the closure: $\mathcal{C}\left[\cdot\right]:\mathbb{R}_{+}^{D}\longrightarrow\mathbb{S}^{D}:\mathbf{x}'=\frac{\mathbf{x}}{\sum x_{i}}$
- change operation: perturbation $\mathbf{x} \oplus \mathbf{y} = \mathcal{C} [x_1 \cdot y_1, \dots, x_D \cdot y_D]$
 - "zero ellipses and circles
 - comj
- Aitchison
 - Aitcl
 - Aitcl



on
$$\lambda \odot \mathbf{x} = \mathcal{C}\left[x_1^{\lambda}, \dots, x_D^{\lambda}\right]$$

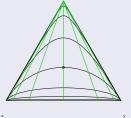
$$-\ln \frac{x_j}{y_j}^2$$

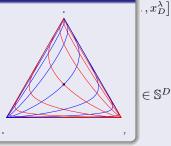
$$n \frac{x_i}{y_i} \cdot \ln \frac{x_j}{y_j}$$

- the closure: $\mathcal{C}\left[\cdot\right]:\mathbb{R}_{+}^{D}\longrightarrow\mathbb{S}^{D}:\mathbf{x}'=\frac{\mathbf{x}}{\sum x_{i}}$
- ullet change operation: perturbation $\mathbf{x} \oplus \mathbf{y} = \mathcal{C}\left[x_1 \cdot y_1, \dots, x_D \cdot y_D
 ight]$
 - "zero", neutral element $\mathbf{n} = [1/D, \dots 1/D]$
 - ullet complement operation: power transformation $\lambda\odot\mathbf{x}=\mathcal{C}\left[x_1^\lambda,\dots,x_D^\lambda
 ight]$
- Aitchison distance: $d_A^2(\mathbf{x}, \mathbf{y}) = \sum_{i>j} \left(\ln \frac{x_i}{y_i} \ln \frac{x_j}{y_j} \right)^2$
 - ullet Aitchison scalar product $\langle \mathbf{x}, \mathbf{y}
 angle_A = \sum_{i>j} \ln rac{x_i}{y_i} \cdot \ln rac{x_j}{y_j}$
 - Aitchison norm $||\mathbf{x}||_A = d(\mathbf{n}, \mathbf{x})$
- ullet basis: a set of D-1 compositions (orthonormal) $\mathbf{e}_1,\dots,\mathbf{e}_{D-1}\in\mathbb{S}^D$

the Simplex: a meaningful Euclidean space structure

- the closure: $\mathcal{C}\left[\cdot\right]:\mathbb{R}_{+}^{D}\longrightarrow\mathbb{S}^{D}:\mathbf{x}'=\frac{\mathbf{x}}{\sum x_{i}}$
- change operation: perturbation $\mathbf{x} \oplus \mathbf{y} = \mathcal{C}\left[x_1 \cdot y_1, \dots, x_D \cdot y_D\right]$
 - "zero 2 systems of axis
 - comj
- Aitchison
 - Aitcl
 - Aitcl
- basis: a s





◆ロト ◆問 → ◆ ヨ ト ◆ ヨ ・ り Q ()

- the closure: $\mathcal{C}\left[\cdot\right]:\mathbb{R}_{+}^{D}\longrightarrow\mathbb{S}^{D}:\mathbf{x}'=\frac{\mathbf{x}}{\sum x_{i}}$
- ullet change operation: perturbation $\mathbf{x} \oplus \mathbf{y} = \mathcal{C}\left[x_1 \cdot y_1, \dots, x_D \cdot y_D\right]$
 - "zero", neutral element $\mathbf{n} = [1/D, \dots 1/D]$
 - ullet complement operation: power transformation $\lambda\odot\mathbf{x}=\mathcal{C}\left[x_1^\lambda,\dots,x_D^\lambda
 ight]$
- Aitchison distance: $d_A^2(\mathbf{x}, \mathbf{y}) = \sum_{i>j} \left(\ln \frac{x_i}{y_i} \ln \frac{x_j}{y_j} \right)^2$
 - Aitchison scalar product $\langle \mathbf{x}, \mathbf{y} \rangle_A = \sum_{i>j} \ln \frac{x_i}{y_i} \cdot \ln \frac{x_j}{y_j}$
 - Aitchison norm $||\mathbf{x}||_A = d(\mathbf{n}, \mathbf{x})$
- ullet basis: a set of D-1 compositions (orthonormal) $\mathbf{e}_1,\dots,\mathbf{e}_{D-1}\in\mathbb{S}^D$
- coordinates: log-ratios (relative scale) $\xi_1, \dots \xi_{D-1} \in \mathbb{R}$ such that $\mathbf{x} = \xi_1 \odot \mathbf{e}_1 \oplus \xi_2 \odot \mathbf{e}_2 \oplus \dots \oplus \xi_{D-1} \odot \mathbf{e}_{D-1}$

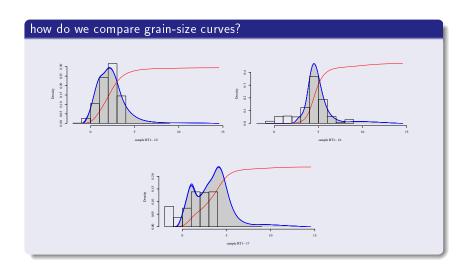
- the closure: $\mathcal{C}\left[\cdot\right]:\mathbb{R}^{D}_{+}\longrightarrow\mathbb{S}^{D}:\mathbf{x}'=\frac{\mathbf{x}}{\sum x_{i}}$
- ullet change operation: perturbation $\mathbf{x} \oplus \mathbf{y} = \mathcal{C}\left[x_1 \cdot y_1, \dots, x_D \cdot y_D\right]$
 - ullet "zero", neutral element $\mathbf{n}=[1/D,\dots 1/D]$
 - ullet complement operation: power transformation $\lambda\odot\mathbf{x}=\mathcal{C}\left[x_1^\lambda,\dots,x_D^\lambda
 ight]$
- Aitchison distance: $d_A^2(\mathbf{x}, \mathbf{y}) = \sum_{i>j} \left(\ln \frac{x_i}{y_i} \ln \frac{x_j}{y_j} \right)^2$
 - Aitchison scalar product $\langle \mathbf{x}, \mathbf{y} \rangle_A = \langle \text{clr}(\mathbf{x}), \text{clr}(\mathbf{y}) \rangle_{euc}$
 - Aitchison norm $||\mathbf{x}||_A = d(\mathbf{n}, \mathbf{x})$
- ullet basis: a set of D-1 compositions (orthonormal) $\mathbf{e}_1,\ldots,\mathbf{e}_{D-1}\in\mathbb{S}^D$
- coordinates: log-ratios (relative scale) $\xi_1, \dots \xi_{D-1} \in \mathbb{R}$ such that $\mathbf{x} = \xi_1 \odot \mathbf{e}_1 \oplus \xi_2 \odot \mathbf{e}_2 \oplus \dots \oplus \xi_{D-1} \odot \mathbf{e}_{D-1}$
 - centered log-ratio transformation:
 - centered log-ratio transformation: $\operatorname{clr}(\mathbf{x}) = \ln \frac{\mathbf{x}}{\frac{D}{\sqrt{\prod_i x_i}}} = \ln(\mathbf{x}) \frac{1}{D} \sum_i \ln x_i$

- ullet a distribution is ... a curve f(x) with
 - ullet positive value f(x)>0 for all x

- ullet a distribution is ... a curve f(x) with
 - positive value f(x) > 0 for all x
 - of sum equals $100\% \Longrightarrow$ integral equal to one $\int f(x)dx = 1$

- ullet a distribution is ... a curve f(x) with
 - positive value f(x) > 0 for all x
 - ullet of integral equal to one $\int f(x)dx=1$
- its sample space is an infinite-dimensional "simplex", one of the Aitchison spaces of measures (Egozcue and Diaz-Barrero, 2003; van den Boogaart, 2005)

- ullet a distribution is ... a curve f(x) with
 - positive value f(x) > 0 for all x
 - ullet of integral equal to one $\int f(x) dx = 1$
- its sample space is an infinite-dimensional "simplex", one of the Aitchison spaces of measures (Egozcue and Diaz-Barrero, 2003; van den Boogaart, 2005)
- its scale is



- Hilbert space: "Euclidean space of infinite dimension" (but ...)
 - not unique!

- Hilbert space: "Euclidean space of infinite dimension" (but ...)
 - not unique!
- perturbation (translation, sum), powering (multiplication)
 - the neutral element must be chosen: n(x) (normal, exponential, uniform)

- Hilbert space: "Euclidean space of infinite dimension" (but ...)
 - not unique!
- perturbation (translation, sum), powering (multiplication)
 - the neutral element must be chosen: n(x) (normal, exponential, uniform)
- scalar product ⇒ angles, distances, lengths

- Hilbert space: "Euclidean space of infinite dimension" (but ...)
 - not unique!
- perturbation (translation, sum), powering (multiplication)
 - the neutral element must be chosen: n(x) (normal, exponential, uniform)
- ullet scalar product \Rightarrow angles, distances, lengths

$$\langle f(x), g(x) \rangle = \int_{dom(n)} \operatorname{clr}(f(x)) \cdot \operatorname{clr}(g(x)) n(x) dx$$

the Hilbert space of distributions: operations

- Hilbert space: "Euclidean space of infinite dimension" (but ...)
 - not unique!
- perturbation (translation, sum), powering (multiplication)
 - the neutral element must be chosen: n(x) (normal, exponential, uniform)
- scalar product ⇒ angles, distances, lengths

$$\langle f(x), g(x) \rangle = \int_{dom(n)} \operatorname{clr}(f(x)) \cdot \operatorname{clr}(g(x)) n(x) dx$$

clr transformation

$$\operatorname{clr}(f(x)) = \ln \frac{f(x)}{n(x)} - \int_{dom(x)} \ln \frac{f(x)}{n(x)} n(x) dx$$

from compositions to distributions

the Hilbert space of distributions: basis and coordinates

- infinite dimension ⇒ infinite coordinates, infinite elements in a basis
- orthonormal:

$$\int_{d(n)} f^*(x) \cdot g^*(x) n(x) dx = 0 \quad \text{and} \quad \int_{d(n)} (f^*(x))^2 \cdot n(x) dx = 1$$

from compositions to distributions

the Hilbert space of distributions: basis and coordinates

- infinite dimension ⇒ infinite coordinates, infinite elements in a basis
- orthonormal:

$$\int_{d(n)} f^*(x) \cdot g^*(x) n(x) dx = 0 \quad \text{and} \quad \int_{d(n)} (f^*(x))^2 \cdot n(x) dx = 1$$

- series of polynomials (standard physical-mathematical tool)
 - normal density: Hermite polynomials
 - exponential density: Laguerre polynomials
 - uniform density: Legendre polynomials (beta density: Jacobi polynomials)

from compositions to distributions

the Hilbert space of distributions: basis and coordinates

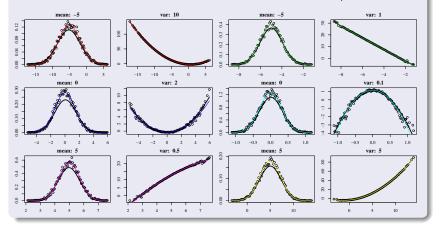
- infinite dimension ⇒ infinite coordinates, infinite elements in a basis
- orthonormal:

$$\int_{d(n)} f^*(x) \cdot g^*(x) n(x) dx = 0 \quad \text{and} \quad \int_{d(n)} (f^*(x))^2 \cdot n(x) dx = 1$$

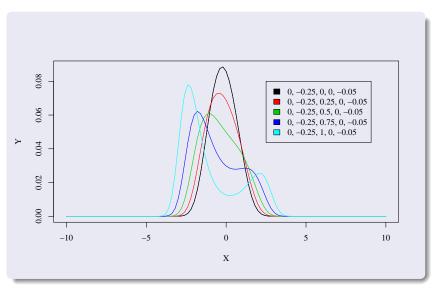
- series of polynomials (standard physical-mathematical tool)
 - normal density: Hermite polynomials
 - exponential density: Laguerre polynomials
 - uniform density: Legendre polynomials (beta density: Jacobi polynomials)
- coordinates
 - Hermite polynomials: $\frac{\mu}{\sigma^2}$, $\frac{\sigma^2-1}{\sqrt{2}\sigma^2}$, etc. (deviation from normality)
 - Laguerre polynomials: $\lambda 1$

example of Hermite polynomials

- polynomials: $H_0 = 1$, $H_1 = x$, $H_2 = \frac{1}{\sqrt{2}}(1 x^2)$
- decomposition: $\phi(x;\mu,\sigma) = \phi(x;0,1) \oplus \frac{\mu}{\sigma^2} \odot e^{H_1} \oplus \frac{\sigma^2-1}{\sqrt{2}\sigma^2} \odot e^{H_2}$



example of Hermite polynomials



algorithm

- look at the data
- ② choose a reasonable "zero" distribution, reference distribution

${\it algorithm}$

- look at the data
- ② choose a reasonable "zero" distribution, reference distribution
 - diffusion ⇒ normal distribution
 - ullet comminution \Rightarrow fractal, exponential distribution
 - ullet bounded phenomena \Rightarrow uniform distribution

algorithm

- look at the data
- ② choose a reasonable "zero" distribution, reference distribution
 - diffusion ⇒ normal distribution
 - comminution ⇒ fractal, exponential distribution
 - bounded phenomena ⇒ uniform distribution
- **o** compute the "standardized" density: $\ln(\text{your histogram/zero density}) = Y$
- ullet fix (which, how many) polynomials to use, orthonormal with respect to the zero density (X)

algorithm

- look at the data
- ② choose a reasonable "zero" distribution, reference distribution
 - diffusion ⇒ normal distribution
 - comminution ⇒ fractal, exponential distribution
 - ullet bounded phenomena \Rightarrow uniform distribution
- **o** compute the "standardized" density: $\ln(\text{your histogram/zero density}) = Y$
- fix (which, how many) polynomials to use, orthonormal with respect to the zero density (X)
- \bullet $Y = \mathbf{X} \cdot \boldsymbol{\beta} \Longrightarrow \mathsf{regression} \Longrightarrow \hat{\boldsymbol{\beta}} \mathsf{ new "data" (meaningless } \beta_0!)$

algorithm

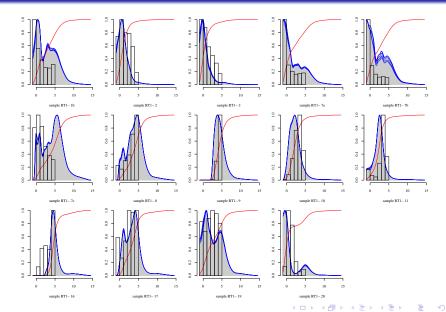
- look at the data
- ② choose a reasonable "zero" distribution, reference distribution
 - diffusion ⇒ normal distribution
 - comminution ⇒ fractal, exponential distribution
 - ullet bounded phenomena \Rightarrow uniform distribution
- **o** compute the "standardized" density: $\ln(\text{your histogram/zero density}) = Y$
- fix (which, how many) polynomials to use, orthonormal with respect to the zero density (X)
- \bullet $Y = \mathbf{X} \cdot \boldsymbol{\beta} \Longrightarrow \mathsf{regression} \Longrightarrow \hat{\boldsymbol{\beta}} \mathsf{ new "data" (meaningless } \beta_0!)$
- lacktriangle apply the method you want to $\hat{oldsymbol{eta}}$
 - principal component analysis, non-supervised classification
 - mapping

a glacial data set from the Aar-Gotthard massif (Alps)

goal and location

- characterize the effect of (weathering and) comminution on grain-size/geochemistry/mineralogy compositions
- ullet focus: comminution \sim glacial comminution (fluvial sorting)
- Aar-Gotthard granitic massif, central Alps (Switzerland); Rhone Gletscher, Damma Gletscher, Tiefer Gletscher
- fluvial sediments, recent central morraines, older lateral morraines
- grain size analyses:
 - laser particle sizer (LPS), 116 classes of $\phi \in [-0.865, 14.61]$
 - sieves, 11 classes from $\phi < -1$ to $\phi > 8$
- analyses of major oxides and trace element geochemistry (not now)

measured densities

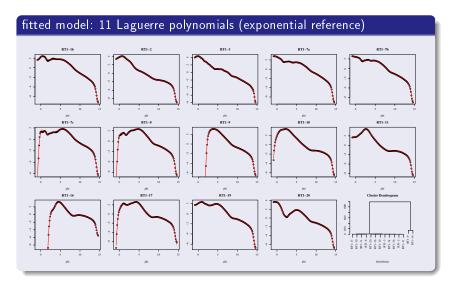


measured densities

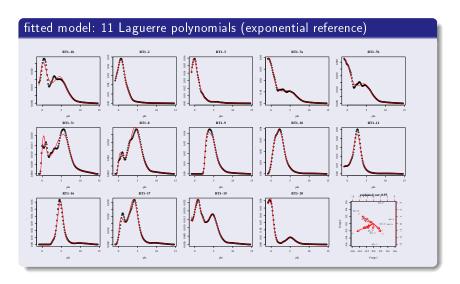
summary of characteristics

sample	glacier	placement	coarsest	modes	finest
1b	Rhone	side	yes	2	yes
2	Rhone	side	yes	1	no
3	Rhone	side	yes	1	no
7a	Damma	side (older)	yes	3	yes
7b	Damma	side (older)	yes	3	no
7c	Damma	side (older)	yes	many	yes
8	Damma	side (older)	yes	2	yes
9	Damma	front	no	1	yes
10	Damma	front	yes	1	no
11	Damma	front	yes	1	no
16	Rhone	washed	no	1	yes
17	Rhone	washed	yes	2	yes
19	Tiefer	front	yes	2	yes
20	Tiefer	front	yes	2	no

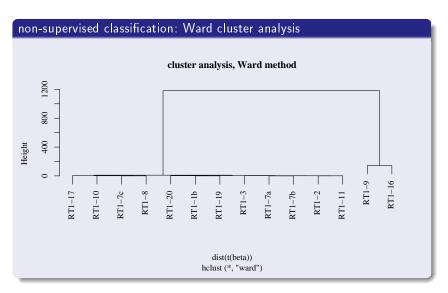
clr-transformed densities



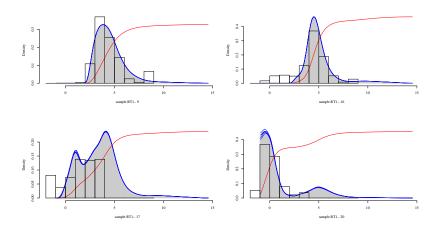
original densities



comparing densities: cluster analysis of \hat{eta} 's



comparing densities: 9 and 16 against the other?

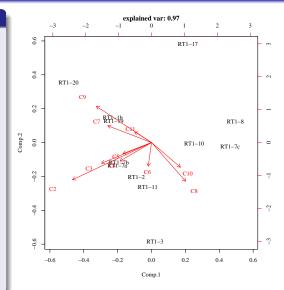


comparing densities: a "map" of differences

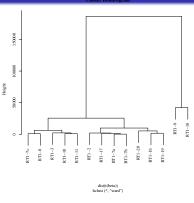
characteristics

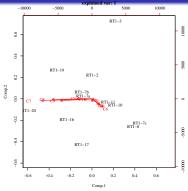
- morraines:
 - old side: 7(a,b,c), 8
 - recent side: 1b, 2, 3
 - front: (9) 10, 11, 19, 20
 - washed sediment: (16) 17
- unimodal:
 - 2, 3, 10, 11
- tail to finest:
 - heavy: 7c, (16), 17,19
 - yes: 1b, 7a, 8, (9)
 - no: 2, 3, 7b, 10, 11, 20

C2: pure exponential



comparing densities using the normal reference





characteristics

old side morraines: 7(a,b,c), 8; recent side: 1b, 2, 3; front: (9) 10, 11, 19, 20;

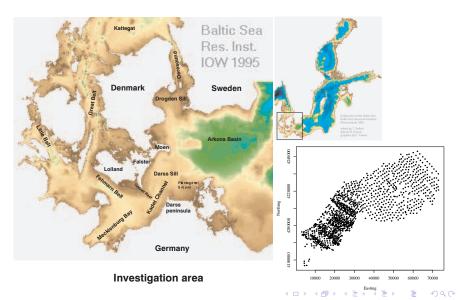
washed sediment: (16) 17

heavy tail to finest: 7c, (16), 17, 19; some fine: 1b, 7a, 8, (9); no fine: 2, 3,

7b, 10, 11, 20

unimodal: 2, 3, 10, 11; C2: mean; C3: inverse variance

the Darss sill data set

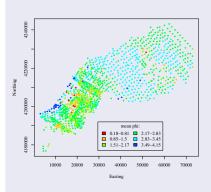


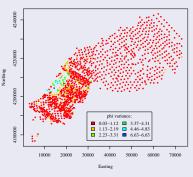
the Darss sill data set

the Darss sill data set

- Baltic Sea (412,560 km²): world large brackish water bodies
- oceanographic conditions controlled by: (i) large river freshwater input, (ii) restricted ocean connections (Danish Straits)
- $\bullet \sim 73\%$ of water exchange is via the Darss Sill (minimum water depth: 18 m bsl)
 - prevailing outflow of brackish Baltic waters in the upper part of the water column usually along the Danish coast
 - inflow of more saline water in the southern part of the area and in the deeper part of the Kadet Channel
 - tidal currents are negligible; sediment-transporting bottom currents are intermittent
 - outcropping till genetically related to an ice marginal zone, short re-advance of the retreating Late Weichselian ice sheet (\sim 13,500 years BP); thin cover of lag sediments (locally, stones and blocks > 1 m)

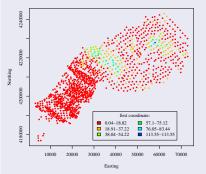
conventional analysis: average (μ) and sorting (σ^2)

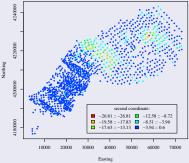




- Kadet Channel, Danish coast $(\uparrow \bar{\phi}; \uparrow \sigma_{\phi}^2;)$
- Kadet Channel, German coast $(\sim \bar{\phi}; \downarrow \sigma_{\phi}^2;)$
- Ground, Plantagenet basin? $(\uparrow \bar{\phi}; \downarrow \sigma_{\phi}^2;)$
- Bar, Darss Sill itself? $(\downarrow \bar{\phi}; \downarrow \sigma_{\phi}^2;)$

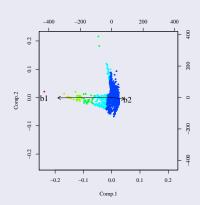
proposed analysis (I): average $(eta_1=rac{\mu}{\sigma^2})$ and sorting $(eta_2=rac{\sigma^2-1}{\sqrt{2}\sigma^2})$



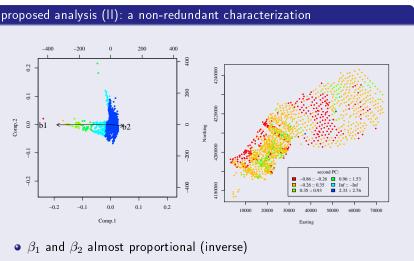


- two areas with extremely low variance $(\downarrow \downarrow \sigma_{\phi}^2;)$
- undiscriminated ground ($\sim \sigma_{\phi}^2$;)

proposed analysis (II): a non-redundant characterization

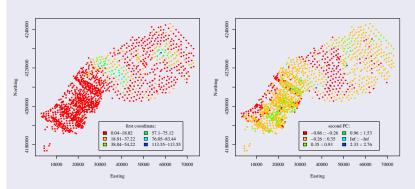


• β_1 and β_2 almost proportional (inverse)



• complementary direction to $\beta_1 || \beta_2$ (non-normality?)

proposed analysis (II): a non-redundant characterization



- Kadet Channel, Danish coast (low departure)
- Kadet Channel, German coast (average departure)
- two singular areas (extreme sorting, average-high departure)
- ullet undiscriminated ground (low departure) \sim Danish coast

- grain size curves can be seen as (infinite-dimensional) compositions
 - high-dimensional
 - further structure (ordered bins, smoothness)
 - relative scale

- grain size curves can be seen as (infinite-dimensional) compositions
 - high-dimensional
 - further structure (ordered bins, smoothness)
 - relative scale
- 2 grain size information can be summarized in a few parameters
 - depend on a reference curve
 - ullet orthogonal \Longrightarrow independent
 - increasingly complex

- grain size curves can be seen as (infinite-dimensional) compositions
 - high-dimensional
 - further structure (ordered bins, smoothness)
 - relative scale
- 2 grain size information can be summarized in a few parameters
 - depend on a reference curve
 - orthogonal ⇒ independent
 - increasingly complex
- these parameters may be statistically treated
 - to uncover groups (cluster)
 - to display patterns of variation (biplot)

- grain size curves can be seen as (infinite-dimensional) compositions
 - high-dimensional
 - further structure (ordered bins, smoothness)
 - relative scale
- grain size information can be summarized in a few parameters
 - depend on a reference curve
 - orthogonal ⇒ independent
 - increasingly complex
- 1 these parameters may be statistically treated
 - to uncover groups (cluster)
 - to display patterns of variation (biplot)
 - to explain them (regression, anova)
 - to make several measures compatible (weighted average)