Revisiting cokriging of indicator functions and compositions

Andrei Borisovitch Vistelius Award for Young Scientists

Annual Conference of the International Association for Mathematical Geology

Raimon Tolosana-Delgado raimon.tolosana@geo.uni-goettingen.de

Department of Sedimentology and Environmental Geology

Georg-August-Universität Göttingen

- presentation
 - a case study: assessing water quality
 - Indicator Kriging: interpolating uncertain categories
 - sketch of solution
- theory on compositional data
 - geometry
 - statistics
 - geostatistics
- 3 application
 - obtention and variography of the categorical variables
 - estimation of parameter vectors at sampled locations
 - computation of coordinates
 - conventional geostatistical inventory on the coordinates
 - extract probabilities for unsampled locations
- conclusions

water quality assessment: an online control system

XACQA: on-line water quality control system

- <u>basin</u> NE Barcelona (eastern Spain)
- Mediterranean climate
- main river < 5 m²/s, 55km long, 0-1000 m above sea level
- an online station, to control Waste-Water Treating Plant effluent (dumps into a riera)
- 17000 inhabitants
- chemical industry

location

water quality assessment: a particular case

the Gualba riera: the sampled tributary

water quality assessment: a particular case

measured variables

- conductivity, pH, ammonium concentration, (water temperature, dissolved O₂,...)
- main interest: potential of ammonia production
- ammonia (NH₃): lethal (fishes, macroinvertebrates), but volatile
- ammonium (NH₄⁺): much less dangerous on itself, but

$$NH_4^+ + H_2O \Rightarrow NH_3 + H_3O^+ \qquad K_a = \frac{[NH_3] \cdot [H_3O^+]}{[NH_4^+]} = f(T_w)$$

$$\log \frac{[NH_3]}{[NH_4^+]} = f(T_w, pH)$$

water quality assessment: a particular case

treatment: Indicator Kriging (IK; Journel, 1983)

(re)define the categories as indicator functions

$$J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) < z_i \ 0 & ext{otherwise} \end{array}
ight. \quad J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) \in A_i \ 0 & ext{otherwise} \end{array}
ight.$$

- compute variograms, fit models, interpolate
- interpret results as probabilities: $\hat{I}_i(x_0) \Rightarrow \Pr[Z(x_0) < z_i] \text{ or } \hat{J}_i(x_0) \Rightarrow \Pr[Z(x_0) \in A_i]$

- often results are not valid probabilities:
 - Îi's are not ordered
 - \hat{J}_i 's are negative, or they do not sum up to one

treatment: Indicator Kriging (IK; Journel, 1983)

(re)define the categories as indicator functions

$$I_i(x) = \begin{cases} 1 & Z(x) < z_i \\ 0 & \text{otherwise} \end{cases}$$

$$J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) \in A_i \ 0 & ext{otherwise} \end{array}
ight.$$

A₅

- Z₅ A₆ Z₆
- often results are not valid probabilities
 - Îi's are not ordered
 - \hat{J}_i 's are negative, or they do not sum up to one

treatment: Indicator Kriging (IK; Journel, 1983)

(re)define the categories as indicator functions

- compute variograms, fit models, interpolate
- interpret results as probabilities: $\hat{I}_i(x_0) \Rightarrow \Pr[Z(x_0) < z_i] \text{ or } \hat{J}_i(x_0) \Rightarrow \Pr[Z(x_0) \in A_i]$

- often results are not valid probabilities:
 - Îi's are not ordered
 - \hat{J}_i 's are negative, or they do not sum up to one

treatment: Indicator Kriging (IK; Journel, 1983)

(re)define the categories as indicator functions

$$J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) < z_i \ 0 & ext{otherwise} \end{array}
ight. \quad J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) \in \mathcal{A}_i \ 0 & ext{otherwise} \end{array}
ight.$$

- compute variograms, fit models, interpolate
- interpret results as probabilities: $\hat{I}_i(x_0) \Rightarrow \Pr[Z(x_0) < z_i] \text{ or } \hat{J}_i(x_0) \Rightarrow \Pr[Z(x_0) \in A_i]$

- often results are not valid probabilities:
 - Î_i's are not ordered
 - \hat{J}_i 's are negative, or they do not sum up to one
- the scale of I (or J) is NOT the scale of $Pr[Z(x_0) \in A_i]$

treatment: Indicator Kriging (IK; Journel, 1983)

(re)define the categories as indicator functions

$$J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) < z_i \ 0 & ext{otherwise} \end{array}
ight. \quad J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) \in A_i \ 0 & ext{otherwise} \end{array}
ight.$$

- compute variograms, fit models, interpolate
- interpret results as probabilities: $\hat{I}_i(x_0) \Rightarrow \Pr[Z(x_0) < z_i] \text{ or } \hat{J}_i(x_0) \Rightarrow \Pr[Z(x_0) \in A_i]$

- often results are not valid probabilities:
 - Î_i's are not ordered
 - \hat{J}_i 's are negative, or they do not sum up to one
- the scale of I (or J) is NOT the scale of $Pr[Z(x_0) \in A_i]$

treatment: Indicator Kriging (IK; Journel, 1983)

(re)define the categories as indicator functions

$$J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) < z_i \ 0 & ext{otherwise} \end{array}
ight. \quad J_i(x) = \left\{ egin{array}{ll} 1 & Z(x) \in \mathcal{A}_i \ 0 & ext{otherwise} \end{array}
ight.$$

- compute variograms, fit models, interpolate
- interpret results as probabilities: $\hat{I}_i(x_0) \Rightarrow \Pr[Z(x_0) < z_i] \text{ or } \hat{J}_i(x_0) \Rightarrow \Pr[Z(x_0) \in A_i]$

- often results are not valid probabilities:
 - Î_i's are not ordered
 - \hat{J}_i 's are negative, or they do not sum up to one
- the scale of I (or J) is NOT the scale of $Pr[Z(x_0) \in A_i]$

basic principles

- $\mathbf{J} = [J_1, \dots J_D]$: multinomial variable; interest in its parameter \mathbf{p}
- respect the scale of the interpolated object (compositional scale)

- first look at J structure (variogram: nugget, sill, range)
- estimate $p_i(x_n)$ at sampled locations: $\hat{\mathbf{p}}(x_n) = \mathbf{A} \cdot \mathbf{J}(x_n)$
- orepresent $\mathbf{p}(x_n) = [p_1, p_2, \dots p_D]$ adequately in its scale (apply log-ratio transformations)
- compute variograms, fit models, interpolate, in transformed scale
- extract desired probabilities from interpolations

basic principles

- $\mathbf{J} = [J_1, \dots J_D]$: multinomial variable; interest in its parameter \mathbf{p}
- respect the scale of the interpolated object (compositional scale)

- first look at J structure (variogram: nugget, sill, range)
- **2** estimate $p_i(x_n)$ at sampled locations: $\hat{\mathbf{p}}(x_n) = \mathbf{A} \cdot \mathbf{J}(x_n)$
- orepresent $\mathbf{p}(x_n) = [p_1, p_2, \dots p_D]$ adequately in its scale (apply log-ratio transformations)
- compute variograms, fit models, interpolate, in transformed scale
- extract desired probabilities from interpolations

basic principles

- $J = [J_1, \dots J_D]$: multinomial variable; interest in its parameter **p**
- respect the scale of the interpolated object (compositional scale)

- first look at **J** structure (variogram: nugget, sill, range)
- estimate $p_i(x_n)$ at sampled locations: $\hat{\mathbf{p}}(x_n) = \mathbf{A} \cdot \mathbf{l}(x_n)$ a sharing matrix example
- represent $\mathbf{p}(x_n) = [p_1, p_2, \dots p_D]$ adequa log-ratio transformations)
- extract desired probabilities from interpo

compute variograms, fit models, interpol extract desired probabilities from interpol
$$\mathbf{A} = \begin{pmatrix} 0.90 & 0.05 & 0.01 \\ 0.07 & 0.80 & 0.04 \\ 0.03 & 0.15 & 0.95 \end{pmatrix}$$

basic principles

- $J = [J_1, \dots J_D]$: multinomial variable; interest in its parameter **p**
- respect the scale of the interpolated object (compositional scale)

- first look at **J** structure (variogram: nugget, sill, range)
- estimate $p_i(x_n)$ at sampled locations: $\hat{\mathbf{p}}(x_n) = \mathbf{A} \cdot \mathbf{I}(x_n)$ a simpler sharing matrix
- represent $\mathbf{p}(x_n) = [p_1, p_2, \dots p_D]$ adequa log-ratio transformations)
- extract desired probabilities from interpolation

compute variograms, fit models, interpol extract desired probabilities from interpol extract desired probabilities
$$\mathbf{A} = \begin{pmatrix} 0.90 & 0.05 & 0.05 \\ 0.05 & 0.90 & 0.05 \\ 0.05 & 0.05 & 0.90 \end{pmatrix}$$

basic principles

- $\mathbf{J} = [J_1, \dots J_D]$: multinomial variable; interest in its parameter \mathbf{p}
- respect the scale of the interpolated object (compositional scale)

- first look at **J** structure (variogram: nugget, sill, range)
- **2** estimate $p_i(x_n)$ at sampled locations: $\hat{\mathbf{p}}(x_n) = \mathbf{A} \cdot \mathbf{J}(x_n)$
- orepresent $\mathbf{p}(x_n) = [p_1, p_2, \dots p_D]$ adequately in its scale (apply log-ratio transformations)
- compute variograms, fit models, interpolate, in transformed scale
- extract desired probabilities from interpolations

basic principles

- $\mathbf{J} = [J_1, \dots J_D]$: multinomial variable; interest in its parameter \mathbf{p}
- respect the scale of the interpolated object (compositional scale)

- first look at **J** structure (variogram: nugget, sill, range)
- **2** estimate $p_i(x_n)$ at sampled locations: $\hat{\mathbf{p}}(x_n) = \mathbf{A} \cdot \mathbf{J}(x_n)$
- orepresent $\mathbf{p}(x_n) = [p_1, p_2, \dots p_D]$ adequately in its scale (apply log-ratio transformations)
- compute variograms, fit models, interpolate, in transformed scale
- extract desired probabilities from interpolations multinomial! $Pr[Z(x_n) \in A_i] = \hat{p}_i(x_0)$

- compositions can be freely closed: $\mathbf{x} \equiv \mathcal{C}[\mathbf{x}] = \mathbf{x}/sum(\mathbf{x})$
- compositions convey only relative information

$$\boldsymbol{\xi} = \boldsymbol{\Psi} \cdot \ln \mathbf{x} \quad \Longleftrightarrow \quad \mathbf{x} = \mathcal{C} \left[\exp(\left(\boldsymbol{\Psi}^t \cdot \boldsymbol{\xi}\right) \right]$$

- compositions can be freely closed: $\mathbf{x} \equiv \mathcal{C}[\mathbf{x}] = \mathbf{x}/sum(\mathbf{x})$
- compositions convey only relative information
- the sample space of compositions, the *D*-part simplex (\mathcal{S}^D) is an Euclidean space (Billheimer et al.; Pawlowsky-Glahn and Egozcue, 2001)

$$\boldsymbol{\xi} = \boldsymbol{\Psi} \cdot \ln \mathbf{x} \quad \Longleftrightarrow \quad \mathbf{x} = \mathcal{C} \left[\exp(\left(\boldsymbol{\Psi}^t \cdot \boldsymbol{\xi} \right) \right]$$

- compositions can be freely closed: $\mathbf{x} \equiv \mathcal{C}[\mathbf{x}] = \mathbf{x}/sum(\mathbf{x})$
- compositions convey only relative information
- the sample space of compositions, the S^3 Euclidean space (Billheimer et al.; Pawle Egozcue, 2001)

$$\boldsymbol{\xi} = \boldsymbol{\Psi} \cdot \ln \mathbf{x} \quad \Longleftrightarrow \quad \mathbf{x} = \mathcal{C}$$

- compositions can be freely closed: $\mathbf{x} \equiv \mathcal{C}[\mathbf{x}] = \mathbf{x}/\text{sum}(\mathbf{x})$
- compositions convey only relative information
- the sample space of compositions, the *D*-part simplex (S^D) is an Euclidean space (Billheimer et al.; Pawlowsky-Glahn and Egozcue, 2001)
- orthonormal basis and coordinates

$$\boldsymbol{\xi} = \boldsymbol{\Psi} \cdot \ln \boldsymbol{x} \iff \boldsymbol{x} = \mathcal{C} \left[\exp(\left(\boldsymbol{\Psi}^t \cdot \boldsymbol{\xi}\right) \right]$$

- compositions can be freely closed: $\mathbf{x} \equiv \mathcal{C}[\mathbf{x}] = \mathbf{x}/sum(\mathbf{x})$
- compositions convey only relative inference
- the sample space of compositions, tl Euclidean space (Billheimer et al.; Pa Egozcue, 2001)
- orthonormal basis and coordinates.

ilr coordinate matrix

$$\Psi = \left(\begin{array}{ccc} \frac{\pm 2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} \\ 0 & \frac{\pm 1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{array}\right)$$

$$\boldsymbol{\xi} = \boldsymbol{\Psi} \cdot \ln \mathbf{x} \quad \Longleftrightarrow \quad \mathbf{x} = \mathcal{C} \left[\exp(\left(\boldsymbol{\Psi}^t \cdot \boldsymbol{\xi}\right) \right]$$

relevance for a probability vector parameter of a Multinomial variable

- closure: likelihood vectors
 ≡ probability vectors
- ⊕: discrete Bayes Theorem
- $| \cdot | \cdot |_A$: information measure
- ξ are log-contrasts; alr are log-odds (logistic regression)

working on coordinates (Pawlowsky-Glahn, 2003)

- choose an orthonormal basis, compute coordinates (ilr)
- statistics with the coordinates: e.g. mean μ : (D-1)-real vector, variance Σ : (D-1, D-1)-SPD matrix
- apply results to the basis, if useful: e.g. mean becomes $\mathcal{C}\left[\mathsf{exp}(\left(\mathbf{\Psi}^t\cdot\mathbf{\mu}
 ight)
 ight]=\mathbf{m}\in\mathcal{S}^{\mathcal{D}}$ positive, summing up to one
 - do results depend on the basis? NO

statistics

working on coordinates (Pawlowsky-Glahn, 2003)

- choose an orthonormal basis, compute coordinates (ilr)
- statistics with the coordinates: e.g. mean μ : (D-1)-real vector, variance Σ : (D-1, D-1)-SPD matrix
- apply results to the basis, if useful: e.g. mean becomes $\mathcal{C}\left[\mathsf{exp}(\left(\mathbf{\Psi}^t\cdot\mathbf{\mu}
 ight)
 ight]=\mathbf{m}\in\mathcal{S}^{\mathcal{D}}$ positive, summing up to one
- do results depend on the basis? NO
- Eaton (1983) reasons: "expectation is defined for real variables" + "orthonormal projection is real" $\Longrightarrow E_S[\mathbf{Z}] = \mathbf{m}$

geostatistics for vectors

- alr ⇒ analyse ⇒ back-trasform (Pawlowsky-Glahn and Olea, 2004)
- compute coordinates ⇒ analyse ⇒ apply to the basis
- results DO NOT depend on the basis

geostatistics

geostatistics for vectors

- alr ⇒ analyse ⇒ back-trasform (Pawlowsky-Glahn and Olea, 2004)
- compute coordinates ⇒ analyse ⇒ apply to the basis
- results DO NOT depend on the basis

Proposition: kriging transformed is transforming kriged vectors

- IF: vector random functions: **Z** and **Y** (dim. P), with $\mathbf{Z} = \mathbf{T} \cdot \mathbf{Y}$
- transformation: T a (P, P)-full rank matrix (linear transformation)
- covariance models \mathbf{C}^z , \mathbf{C}^y , consistent if $\mathbf{C}^z(h) = \mathbf{T} \cdot \mathbf{C}^y(h) \cdot \mathbf{T}^t$
- THEN: cokriging predictors also fulfill \(\hat{\mathbf{z}}_0 = \mathbf{T} \cdot \hat{\mathbf{y}}_0\).
- logical, linear operators commute; Myers (1982-84, Math. Geol.)

geostatistics

geostatistics for vectors

- alr ⇒ analyse ⇒ back-trasform (Pawlowsky-Glahn and Olea, 2004)
- compute coordinates ⇒ analyse ⇒ apply to the basis
 - unbiased, $E_{\mathcal{S}}[\hat{\mathbf{z}}_0] = E_{\mathcal{S}}[\mathbf{Z}_0]$
 - minimal error variance, or minimal expected distance $d_A(\hat{\mathbf{z}}_0, \mathbf{Z}_0)$
- results DO NOT depend on the basis

Proposition: kriging transformed is transforming kriged vectors

- IF: vector random functions: **Z** and **Y** (dim. P), with $\mathbf{Z} = \mathbf{T} \cdot \mathbf{Y}$
- transformation: T a (P, P)-full rank matrix (linear transformation)
- covariance models \mathbf{C}^z , \mathbf{C}^y , consistent if $\mathbf{C}^z(h) = \mathbf{T} \cdot \mathbf{C}^y(h) \cdot \mathbf{T}^t$
- THEN: cokriging predictors also fulfill \(\hat{\mathbf{z}}_0 = \mathbf{T} \cdot \hat{\mathbf{y}}_0\).
- logical, linear operators commute; Myers (1982-84, Math. Geol.)

data set

data set

2. estimate parameter vectors of sampled locations

a simple estimation

- J_n are "observed", but p_n must be estimated
- for instance:

$$\hat{\mathbf{p}}_n = \mathbf{A} \cdot \mathbf{J}_n \quad \mathbf{A} = \begin{pmatrix} 0.950 & 0.025 & 0.025 \\ 0.025 & 0.950 & 0.025 \\ 0.025 & 0.025 & 0.950 \end{pmatrix}$$

an alternative expression:

$$\hat{p}_i = \left\{ \begin{array}{ll} 1 - \alpha & J_i = 1, \\ \alpha/(D - 1) & J_i = 0, \end{array} \right.$$

where α (= 0.05) probability of missclassification

purely multinomial, no proximity effects between classes

3. computation of coordinates

relationships between coordinates and disjunctive indicators

coordinates of a vector of probabilities

$$\boldsymbol{\pi} = \boldsymbol{\Psi} \cdot \ln \boldsymbol{p}, \qquad \boldsymbol{\Psi} = \left(\begin{array}{ccc} \frac{\pm 2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} \\ 0 & \frac{\pm 1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{array} \right)$$

coordinates of an estimated vector of probabilities (in general)

$$\hat{\boldsymbol{\pi}}_n = \boldsymbol{\Psi} \cdot \ln \left(\mathbf{A} \cdot \mathbf{J}_n \right) = \boldsymbol{\Psi} \cdot \mathbf{B} \cdot \mathbf{J}_n, \qquad \mathbf{B} = (\ln \mathbf{A})$$

coordinates of an estimated vector of probabilities (simplified)

$$\hat{\boldsymbol{\pi}}_n = \beta \cdot \boldsymbol{\Psi} \cdot \boldsymbol{J}_n, \qquad \beta = \ln \frac{(1 - \alpha)(D - 1)}{\alpha}$$

variography

variograms for indicators and coordinates consistent:

$$\mathbf{\Gamma}^{\pi}(h) = \beta^2 \cdot \mathbf{\Psi} \cdot \mathbf{\Gamma}^{J}(h) \cdot \mathbf{\Psi}^{t}$$

- easier to model in coordinates: less components, NOT bound to:
 - sum to 0 by rows
 - sum to 0 by columns
 - sill condition.

$$c_{ij} = \bar{p}_i \delta_{ij} - \bar{p}_i \bar{p}_j$$

(as J does)

outline presentation theory application conclusions preliminaries estimation coordinates geostatistics probabilities

4. apply conventional geostatistics (II)

- recall: $\hat{\pi}_0 = \beta \cdot \Psi \cdot \mathbf{J}_0$, \longrightarrow invertible! $\mathbf{J}_0 = \frac{1}{\beta} \cdot \Psi^t \cdot \hat{\pi}_0 + \frac{1}{D}\mathbf{1}$
- ullet proposition ensures that results for $\hat{\pi}_0$ are equivalent:
 - cokriging indicators (ĵ₀) and transforming them
 - cokriging coordinates directly $(\hat{\pi}_0)$
- if we apply kriged results to the basis used:

$$\hat{\mathbf{p}}_0 = \mathcal{C}\left(\exp\left(\mathbf{\Psi}^t \cdot \hat{\mathbf{\pi}}_0
ight)
ight) = \mathcal{C}\left(\exp\left(eta \cdot \hat{\mathbf{j}}_0
ight)
ight)$$

- always valid: positive, summing up to one
- ullet no $\Psi\Longrightarrow$ choice of basis modifies nothing
- wait to fix β (or $\alpha = 0.05$) until the end
- only for cokriging!
- if cokriging is too complex?
 - kriging j_i individually
 - 2 combine them with 6

- recall: $\hat{\boldsymbol{\pi}}_0 = \beta \cdot \boldsymbol{\Psi} \cdot \boldsymbol{J}_0, \longrightarrow$ invertible! $\boldsymbol{J}_0 = \frac{1}{\beta} \cdot \boldsymbol{\Psi}^t \cdot \hat{\boldsymbol{\pi}}_0 + \frac{1}{D} \boldsymbol{1}$
- ullet proposition ensures that results for $\hat{\pi}_0$ are equivalent:
 - cokriging indicators (ĵ₀) and transforming them
 - cokriging coordinates directly $(\hat{\pi}_0)$
- if we apply kriged results to the basis used:

$$\hat{\mathbf{p}}_0 = \mathcal{C}\left(\exp\left(\mathbf{\Psi}^t \cdot \hat{\pi}_0\right)\right) = \mathcal{C}\left(\exp\left(\beta \cdot \hat{\mathbf{j}}_0\right)\right)$$

- always valid: positive, summing up to one
- ullet no $\Psi\Longrightarrow$ choice of basis modifies nothing
- wait to fix β (or $\alpha =$ 0.05) until the end
- only for cokriging!
- if cokriging is too complex?
 - \bigcirc kriging j_i individually
 - \bigcirc combine them with β

- recall: $\hat{\pi}_0 = \beta \cdot \Psi \cdot \mathbf{J}_0$, \longrightarrow invertible! $\mathbf{J}_0 = \frac{1}{\beta} \cdot \Psi^t \cdot \hat{\pi}_0 + \frac{1}{D}\mathbf{I}$
- ullet proposition ensures that results for $\hat{\pi}_0$ are equivalent:
 - cokriging indicators (ĵ₀) and transforming them
 - cokriging coordinates directly $(\hat{\pi}_0)$
- if we apply kriged results to the basis used:

$$\hat{\mathbf{p}}_0 = \mathcal{C}\left(\exp\left(\mathbf{\Psi}^t \cdot \hat{\pi}_0\right)\right) = \mathcal{C}\left(\exp\left(\beta \cdot \hat{\mathbf{j}}_0\right)\right)$$

- always valid: positive, summing up to one
- ullet no $\Psi\Longrightarrow$ choice of basis modifies nothing
- wait to fix β (or $\alpha = 0.05$) until the end
- only for cokriging!
- if cokriging is too complex?
 - \bigcirc kriging j_i individually
 - \bigcirc combine them with β

- recall: $\hat{\pi}_0 = \beta \cdot \Psi \cdot \mathbf{J}_0$, \longrightarrow invertible! $\mathbf{J}_0 = \frac{1}{\beta} \cdot \Psi^t \cdot \hat{\pi}_0 + \frac{1}{D}\mathbf{I}$
- ullet proposition ensures that results for $\hat{\pi}_0$ are equivalent:
 - cokriging indicators (ĵ₀) and transforming them
 - cokriging coordinates directly $(\hat{\pi}_0)$
- if we apply kriged results to the basis used:

$$\hat{\mathbf{p}}_0 = \mathcal{C}\left(\exp\left(\mathbf{\Psi}^t \cdot \hat{\mathbf{\pi}}_0
ight)
ight) = \mathcal{C}\left(\exp\left(eta \cdot \hat{\mathbf{j}}_0
ight)
ight)$$

- always valid: positive, summing up to one
- ullet no $\Psi\Longrightarrow$ choice of basis modifies nothing
- wait to fix β (or $\alpha = 0.05$) until the end
- only for cokriging!
- if cokriging is too complex?
 - \bigcirc kriging j_i individually
 - \bigcirc combine them with β

outline presentation theory application conclusions preliminaries estimation coordinates geostatistics probabilities

5. extract probabilities for unsampled locations

outline presentation theory application conclusions

conclusions

simplicial Indicator Kriging (sIK)

- distinguish J (multinomial) from p (its parameter)
- geostatistics on the coordinates of p (as a composition)
 - easier modeling of covariance/variogram structures
 - yield always valid results (also individual kriging)
- geostatistical procedure: not dependent on the preliminary p
 estimation (β, α, matrix A)
- final cokriging results: not dependent on the basis chosen

generalization: geostatistics for vector observations

- IF sample space has an Euclidean structure, compatible with data scale, THEN (geo)statistics can/should be applied to the coordinates
- results honour the space conditions (bounds: positive components, constant sum) and are BLUE with respect to the data scale (additive, multiplicative, etc.)

outline presentation theory application conclusions

conclusions

simplicial Indicator Kriging (sIK)

- distinguish J (multinomial) from p (its parameter)
- geostatistics on the coordinates of p (as a composition)
 - easier modeling of covariance/variogram structures
 - yield always valid results (also individual kriging)
- geostatistical procedure: not dependent on the preliminary p
 estimation (β, α, matrix A)
- final cokriging results: not dependent on the basis chosen

generalization: geostatistics for vector observations

- IF sample space has an Euclidean structure, compatible with data scale, THEN (geo)statistics can/should be applied to the coordinates
- results honour the space conditions (bounds: positive components, constant sum) and are BLUE with respect to the data scale (additive, multiplicative, etc.)

more material

further reading

- Pawlowsky-Glahn, V., 2003. Statistical modelling on coordinates, in: Compositional Data Analysis Workshop – CoDaWork'03, Proceedings
- Tolosana-Delgado, R., 2006. Geostatistics for constrained variables: positive data, compositions and probabilities. Application to environmental hazard monitoring. Ph.D. thesis (U. Girona, Spain)
- Tolosana-Delgado, R., Pawlowsky-Glahn, V., Egozcue, J. J. Indicator kriging without order relation violations. Mathematical Geology
- Tolosana-Delgado, R., Pawlowsky-Glahn, V., 2007. Kriging regionalized positive variables revisited: sample space and scale considerations. Mathematical Geology, in press

CoDaWork'08

3rd international workshop on Compositional Data Analysis, Girona (Spain), May 27 to 30, 2008.

outline presentation theory application conclusions

Revisiting cokriging of indicator functions and compositions Andrei Borisovitch Vistelius Award Annual Conference of the International Association for Mathematical Geology

many thanks to:

- all of you, for your attention
- Vera Pawlowsky-Glahn, Juan José Egozcue, Gerald van den Boogaart, the whole Girona Group on CoDa analysis, and Hilmar von Eynatten, for their assistance, help, ideas
- the IAMG, for the award, and a 2004 student grant
- the organizers of the conference.

water quality assessment: a particular case

water quality assessment: a particular case

statistics for random vectors

the object way: use vectors + linear applications (Eaton, 1983)

- E[Z]: expectation already defined if Z a real random variable
- projections have real values, $P_{\mathbf{u}}(\mathbf{z}) = (\mathbf{z}, \mathbf{u})_A$, with \mathbf{u} a direction
- $E_S[\mathbf{Z}] = \mathbf{m}$ a vector capturing all projections, $E[P_{\mathbf{u}}(\mathbf{Z})] = P_{\mathbf{u}}(\mathbf{m})$
- $Var_{\mathcal{S}}[\mathbf{Z}] = \Sigma$ an endomorphism capturing all pairs of projections, $E[P_{\mathbf{u}}(\mathbf{Z} \ominus \mathbf{m}) \cdot P_{\mathbf{v}}(\mathbf{Z} \ominus \mathbf{m})] = P_{\mathbf{u}}(\Sigma \mathbf{v})$

return

measures of information in a probability vector

entropy vs. Aitchison norm

Aitchison norm

$$||\mathbf{p}||_{A} = \sqrt{\frac{1}{3} \left(\log^{2} \frac{p_{1}}{p_{2}} + \log^{2} \frac{p_{2}}{p_{3}} + \log^{2} \frac{p_{1}}{p_{3}} \right)}$$

Shannon entropy

$$H = p_1 \log p_1 + p_2 \log p_2 + p_3 \log p_3$$

measures of information in a probability vector

