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outline

o presentation
@ a case study: assessing water quality
@ Indicator Kriging: interpolating uncertain categories
@ sketch of solution

9 theory on compositional data
@ geometry
@ statistics
@ geostatistics

Q application
@ obtention and variography of the categorical variables
@ estimation of parameter vectors at sampled locations
@ computation of coordinates
@ conventional geostatistical inventory on the coordinates
@ extract probabilities for unsampled locations

Q conclusions
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presentation case study indicator kriging sketch of solution

water quality assessment: an online control system

XACQA: on-line water
quality control system

@ basin NE Barcelona
(eastern Spain)
Mediterranean climate
main river < 5 m?2/s,
55km long, 0-1000 m
above sea level : _
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presentation case study indicator kr sketch of solution

water quality assessment: a particular case

he Gualba riera: the sampled tributary

] 7 =TS, TP 2
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presentation case study indicator kriging sketch of solution

water quality assessment: a particular case

measured variables

@ conductivity, pH, ammonium concentration, (water temperature,
dissolved Oy, ...)

@ main interest: potential of ammonia production
@ ammonia (NHs): lethal (fishes, macroinvertebrates), but volatile
@ ammonium (NH;): much less dangerous on itself, but

_ [NHs] - [HsO7] _

NH; + H,O = NH HzO™" K f (T
4 T2 3+ M3 a [NHI] (Tw)
[NHs]
lo =f(T H
9 INH, | (Tw, PH)
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presentation

water quality assessment: a particular case

uncertain category assessme

ammonium

aissolved oxyge
6

<

case study indicator kriging sketch of solution

| o V7 I
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time (days)

@ which is the distribution of the water quality at a given moment?

4
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presentation case study indicator kriging sketch of solution

geostatistics for categorical variables

treatment: Indicator Kriging (IK; Journel, 1983)
@ (re)define the categories as indicator functions

Ii(x):{ 1 Z(x) <z Ji(x):{ 1 Z(x)eA

0 otherw se 0 otherw se

@ compute variograms, fit models, interpolate

Q interpret results as probabilities:
li(Xo) = Pr[Z(xo) < zi] or Ji(Xo) = Pr[Z(Xo) € Al]
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presentation case study indicator kriging sketch of solution

geostatistics for categorical variables

treatment: Indicator Kriging (IK; Journel, 1983)

@ (re)define the categories as indicator functions

Ii(x):{ 1 Z(x)<z Ji(x)—{ 1 Z(x)eA

0 otherw se ~ ] 0 otherw se
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presentation case study indicator kriging sketch of solution

geostatistics for categorical variables

treatment: Indicator Kriging (IK; Journel, 1983)

@ (re)define the categories as indicator functions

oy 1 Z(X) <z o1 Z(X)eA
l'(x){ 0 ot herwi se J'(X){O ot her wi se

@ compute variograms, fit models, interpolate

Q interpret results as probabilities:
li(Xo) = Pr[Z(xo) < zi] or Ji(Xo) = Pr[Z(Xo) € Al]
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presentation case study indicator kriging sketch of solution

geostatistics for categorical variables

treatment: Indicator Kriging (IK; Journel, 1983)

@ (re)define the categories as indicator functions

oy 1 Z(X) <z o1 Z(X)eA
l'(x){ 0 ot herwi se J'(X){O ot her wi se

@ compute variograms, fit models, interpolate

Q interpret results as probabilities:
li(Xo) = Pr[Z(xo) < zi] or Ji(Xo) = Pr[Z(Xo) € Al]

problems

@ often results are not valid probabilities:

o i’'s are not ordered
@ Ji's are negative, or they do not sum up to one
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presentation case study indicator kriging sketch of solution

geostatistics for categorical variables

treatment: Indicator Kriging (IK; Journel, 1983)

@ (re)define the categories as indicator functions

oy 1 Z(X) <z o1 Z(X)eA
l'(x){ 0 ot herwi se J'(X){O ot her wi se

@ compute variograms, fit models, interpolate

Q interpret results as probabilities:
li(Xo) = Pr[Z(xo) < zi] or Ji(Xo) = Pr[Z(Xo) € Al]

problems

@ often results are not valid probabilities:

o i’'s are not ordered
@ Ji's are negative, or they do not sum up to one
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presentation case study indicator kriging sketch of solution

geostatistics for categorical variables

treatment: Indicator Kriging (IK; Journel, 1983)

@ (re)define the categories as indicator functions

oy 1 Z(X) <z o1 Z(X)eA
l'(x){ 0 ot herwi se J'(X){O ot her wi se

@ compute variograms, fit models, interpolate

Q interpret results as probabilities:
li(Xo) = Pr[Z(xo) < zi] or Ji(Xo) = Pr[Z(Xo) € Al]

problems

@ often results are not valid probabilities:
o i’'s are not ordered
@ Ji's are negative, or they do not sum up to one

@ the scale of | (or J) is NOT the scale of Pr [Z (Xo) € Ai]
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presentation case study indicator kriging sketch of solution

sketch of our solution

basic principles

@ J = [J4,...Jp]: multinomial variable; interest in its parameter p
@ respect the scale of the interpolated object (compositional scale)
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presentation case study indicator kriging sketch of solution

sketch of our solution

basic principles
@ J = [J4,...Jp]: multinomial variable; interest in its parameter p
@ respect the scale of the interpolated object (compositional scale)

algorithm: simplicial Indicator Kriging (sIK)
@ first look at J structure (variogram: nugget, sill, range)
@ estimate pj(xn) at sampled locations: p(xn) = A - J(Xn)

@ represent p(xn) = [p1, P2, - - - Po] adequately in its scale (apply
log-ratio transformations)

@ compute variograms, fit models, interpolate, in transformed scale
@ extract desired probabilities from interpolations
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presentation case study indicator kriging sketch of solution

sketch of our solution

basic principles
@ J = [J4,...Jp]: multinomial variable; interest in its parameter p
@ respect the scale of the interpolated object (compositional scale)

algorithm: simplicial Indicator Kriging (sIK)
@ first look at J structure (variogram: nugget, sill, range)

@ estimate pj(xn) at sampled locations: p

@ represent p(xn) = [p1, P2, - - - Po] adeque
log-ratio transformations)

@ compute variograms, fit models, interpol A—| 007 080 004
@ extract desired probabilities from interpc 0.03 0.15 0.95

a sharing matrix example

0.90 0.05 0.01

V.
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presentation case study indicator kriging sketch of solution

sketch of our solution

basic principles
@ J = [J4,...Jp]: multinomial variable; interest in its parameter p
@ respect the scale of the interpolated object (compositional scale)

algorithm: simplicial Indicator Kriging (sIK)
@ first look at J structure (variogram: nugget, sill, range)

@ estimate pj(xn) at sampled locations: p

@ represent p(xn) = [p1, P2, - - - Po] adeque
log-ratio transformations)

@ compute variograms, fit models, interpol A—| 005 090 005
@ extract desired probabilities from interpc 0.05 0.05 0.90

[\
a simpler sharing matrix

0.90 0.05 0.05

V.

Raimon Tolosana-Delgado, IAMG’07 Beijing 28/08/08, Vistelius Award Revisiting cokriging of indicator functions and compositions



presentation case study indicator kriging sketch of solution

sketch of our solution

basic principles
@ J = [J4,...Jp]: multinomial variable; interest in its parameter p
@ respect the scale of the interpolated object (compositional scale)

algorithm: simplicial Indicator Kriging (sIK)
@ first look at J structure (variogram: nugget, sill, range)
@ estimate pj(xn) at sampled locations: p(xn) = A - J(Xn)

@ represent p(xn) = [p1, P2, - - - Po] adequately in its scale (apply
log-ratio transformations)

@ compute variograms, fit models, interpolate, in transformed scale
@ extract desired probabilities from interpolations
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presentation case study indicator kriging sketch of solution

sketch of our solution

basic principles
@ J = [J4,...Jp]: multinomial variable; interest in its parameter p
@ respect the scale of the interpolated object (compositional scale)

algorithm: simplicial Indicator Kriging (sIK)
@ first look at J structure (variogram: nugget, sill, range)
@ estimate pj(xn) at sampled locations: p(xn) = A - J(Xn)

@ represent p(xn) = [p1, P2, - - - Po] adequately in its scale (apply
log-ratio transformations)

@ compute variograms, fit models, interpolate, in transformed scale

@ extract desired probabilities from interpolations
multinomial! Pr[Z (xn) € Ai] = Bi(Xo)
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theory geometry statistics geostatistics

geometry (1)

the scale and sample space of compositional data

@ compositions can be freely closed: x = C [x] = x/sum(x)
@ compositions convey only relative information
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theory geometry statistics geostatistics

geometry (1)

the scale and sample space of compositional data

@ compositions can be freely closed: x = C [x] = x/sum(x)
@ compositions convey only relative information

@ the sample space of compositions, the D-part simplex (SP) is an
Euclidean space (Billheimer et al.; Pawlowsky-Glahn and
Egozcue, 2001)

Raimon Tolosana-Delgado, IAMG’07 Beijing 28/08/08, Vistelius Award Revisiting cokriging of indicator functions and compositions



theory geometry statistics geostatistics

geometry (1)

the scale and sample space of compositional data
@ compositions can be freely closed: x = C [x] = x/sum(x)
@ compositions convey only relative information

@ the sample space of compositions, the [ S°
Euclidean space (Billheimer et al.; Pawl
Egozcue, 2001) N
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theory geometry statistics geostatistics

geometry (1)

the scale and sample space of compositional data

@ compositions can be freely closed: x = C [x] = x/sum(x)
@ compositions convey only relative information

@ the sample space of compositions, the D-part simplex (SP) is an
Euclidean space (Billheimer et al.; Pawlowsky-Glahn and
Egozcue, 2001)

@ orthonormal basis and coordinates

E=WV.Inx — x:C{exp((Wt-s)}
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theory geometry statistics geostatistics

geometry (1)

the scale and sample space of compositional data
@ compositions can be freely closed: x =C [x] = X/sum(x)
@ compositions convey only relative inf

@ the sample space of compositions, t
Euclidean space (Billheimer et al.; P
Egozcue, 2001)

@ orthonormal basis and coordinates

E=WV.Inx — x:C{exp((Wt-s)}

ilr coordinate matrix
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theory geometry statistics geostatistics

geometry (I)

relevance for a probability vector parameter of a Multinomial variable
@ closure: likelihood vectors = probability vectors
@ @: discrete Bayes Theorem
@ || - ||a: information measure
@ ¢ are log-contrasts; alr are log-odds (logistic regression)
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theory geometry statistics geostatistics

statistics

working on coordinates (Pawlowsky-Glahn, 2003)

@ choose an orthonormal basis, compute coordinates (ilr)

@ statistics with the coordinates: e.g. mean p : (D — 1)-real vector,
variance X : (D — 1,D — 1)-SPD matrix

@ apply results to the basis, if useful: e.g. mean becomes
C [exp((lllt : u)} =medSP

@ positive, summing up to one

@ do results depend on the basis? NO

Revisiting cokriging of indicator functions and compositions
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theory geometry statistics geostatistics

statistics

working on coordinates (Pawlowsky-Glahn, 2003)

@ choose an orthonormal basis, compute coordinates (ilr)

@ statistics with the coordinates: e.g. mean p : (D — 1)-real vector,
variance X : (D — 1,D — 1)-SPD matrix

@ apply results to the basis, if useful: e.g. mean becomes
C [exp((lllt : u)} =medSP

@ positive, summing up to one

@ do results depend on the basis? NO

@ Eaton (1983) reasons: “expectation is defined for real variables”
+ “orthonormal projection is real’—> Es[Z] = m
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theory geometry statistics geostatistics

geostatistics

geostatistics for vectors

@ alr = analyse = back-trasform (Pawlowsky-Glahn and Olea, 2004)
@ compute coordinates = analyse = apply to the basis

@ results DO NOT depend on the basis
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theory geometry statistics geostatistics

geostatistics

geostatistics for vectors

@ alr = analyse = back-trasform (Pawlowsky-Glahn and Olea, 2004)
@ compute coordinates = analyse = apply to the basis

@ results DO NOT depend on the basis

Proposition: kriging transformed is transforming kriged vectors

@ |F: vector random functions: Z and Y (dim. P), withZ=T-Y

@ transformation: T a (P, P)-full rank matrix (linear transformation)
@ covariance models C?, CY, consistent if C¢(h) = T-CY(h) - T

@ THEN: cokriging predictors also fulfill Zg = T - .

@ logical, linear operators commute; Myers (1982-84, Math. Geol.)

4
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theory geometry statistics geostatistics

geostatistics

geostatistics for vectors

@ alr = analyse = back-trasform (Pawlowsky-Glahn and Olea, 2004)
@ compute coordinates = analyse = apply to the basis

9 unbiased, Es[Zo] = Es[Z0]

@ minimal error variance, or minimal expected distance da(Zo, Zo)
@ results DO NOT depend on the basis

Proposition: kriging transformed is transforming kriged vectors

@ |F: vector random functions: Z and Y (dim. P), withZ=T-Y

@ transformation: T a (P, P)-full rank matrix (linear transformation)
@ covariance models C?, CY, consistent if C¢(h) = T-CY(h) - T

@ THEN: cokriging predictors also fulfill Zg = T - .

@ logical, linear operators commute; Myers (1982-84, Math. Geol.)

4
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application preliminaries estimation coordinates geostatistics probabilities

data set

obtaining the data set of water quality categories
@ data available: ammonium concentration, pH, conductivity
@ regularization: 12h geometric averages (pH arithmetic)

@ thresholding

NH,
|

4100

0.05 1.00

=
o

8.5 14.0

0 1000

conductivity

2500

@ final quality category: the worse
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application preliminaries estimation coordinates geostatistics probabilities

data set

g (N
> o 8
[} N
o

o

T T T T T T T T T T T T
jan feb mar apr may jun jul aug sep oct nov dec

2003

quality level
3
Il

jan feb mar apr may jun jul aug sep oct nov dec
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application

1. preliminary variography of disjunctive indicators

preliminaries estimation coordinates

geostatistics

006 -005 -004 -003 -002 -001 080

probabilities
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003 -002

004

application

1. preliminary variography of disjunctive indicators

preliminaries estimation coordinates

00

geostatistics

001

002
L

003

004

0005 008~

]

2
——°
0w o2z B

2
T
0 o2 B

0w o2 o
T T 1
0w o2 o
T T 1
0 2

probabilities
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1. preliminary variography of disjunctive indicators

preliminaries estimation coordinates

geostatistics
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application preliminaries estimation coordinates geostatistics probabilities

1. preliminary variography of disjunctive indicators

variogram system, year 2002

i IR from sills to means of p
.1 givencj = pid; — pib;,

5 :|| find a reasonable,

. :J|  parsimonious

I R sl O

. - (111

P= 1236

;] /
IR I R R
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application preliminaries estimation coordinates geostatistics probabilities

2. estimate parameter vectors of sampled locations

a simple estimation
@ J, are “observed”, but p, must be estimated
@ for instance:

0.950 0.025 0.025
ph=A-J, A= | 0025 0950 0.025
0.025 0.025 0.950

@ an alternative expression:

A 1-« Ji=1,
P=1 a/D-1) J=0,
where «(= 0.05) probability of missclassification
@ purely multinomial, no proximity effects between classes

Raimon Tolosana-Delgado, IAMG’07 Beijing 28/08/08, Vistelius Award

Revisiting cokriging of indicator functions and compositions



application preliminaries estimation coordinates geostatistics probabilities

3. computation of coordinates

relationships between coordinates and disjunctive indicators
@ coordinates of a vector of probabilities

42 -1 -1
m=W-Inp, lv_(‘éé ﬁ ﬁ)
V2 V2

@ coordinates of an estimated vector of probabilities (in general)
fin=W-INn(A-Jy)=W-B-J,, B =(InA)
@ coordinates of an estimated vector of probabilities (simplified)

(1-—a)D-1)

«

Tin=0-W-Jy, G=1In
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application preliminaries estimation coordinates geostatistics probabilities

4. apply conventional geostatistics (I)

coordinate variogra

variography LS
N v |

@ variograms for 4l vl
indi <1 % §
|nd|ca'tors and _ / NS
coordinates consistent: | :{| CONEY \\,-/ \\V
rrh=gwr’hw| L J\ -~ -

@ easier to model in “\\
coordinates: less /] W \
components, NOT .| .
bound to: N\\/\( v()

@ sum to 0 by rows \,\/ ]
@ sum to 0 by columns 5 5 8 © & b ® w4 B & b5 6 B o=
@ Si iti ™
sill condition, _ C0 | w) alh) )
Cij = Pidj — Pip; nugget| 3 5 —25
(as J does) exponentiglr = 1.5) 3 5 -2
exponentiglr = 5) 30 4 -2
holT =7) | 3 4 -2
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application preliminaries estimation coordinates geostatistics probabilities

4. apply conventional geostatistics (lI)

checking what happened with indicator variograms (2002)

reversed consistency conditions
2 / !

:: va(h) N~

3 1

PLob o r’(h) = i w'.rt(h) v

(for orthonormal bases!)

205

010

o ow o o

015

008 006 008 -002 000 020
=
=

005 -004 003 002 -001 0% 000

010
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application preliminaries estimation coordinates geostatistics probabilities

4. apply conventional geostatistics (lI)

checking what happened with indicator vario

1 e | 5l

8 ] vl 2]\ vis(®)
& / H : |

N va(h) H Sl

g8 & ] -

° 7" T

205

Vaa(h)

0

e
o ow o o

015

006 -005 004 002 000 020

010

Raimon Tolosana-Delgado, IAMG’07 Beijing 28/08/08, Vistelius Award Revisiting cokriging of indicator functions and compositions



application preliminaries estimation coordinates geostatistics probabilities

4. apply conventional geostatistics (ll)

kriging coordinates or kriging indicators?

A

@ recall: #g = (- W-Jy, — invertible! Jg = % WA+ 31

@ proposition ensures that results for 7o are equivalent:

o cokriging indicators (jo) and transforming them
@ cokriging coordinates directly (7o)
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application preliminaries estimation coordinates geostatistics probabilities

4. apply conventional geostatistics (ll)

kriging coordinates or kriging indicators?

@ recall: #g = (- W-Jy, — invertible! Jg = % B

+41
@ proposition ensures that results for 7ty are equivalent:

o cokriging indicators (jo) and transforming them

@ cokriging coordinates directly (7o)

@ if we apply kriged results to the basis used:

0= o0 (4 10)) ~¢ (o9 (3 1)

@ always valid: positive, summing up to one
@ no W = choice of basis modifies nothing
@ wait to fix 8 (or a = 0.05) until the end
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application preliminaries estimation coordinates geostatistics probabilities

4. apply conventional geostatistics (ll)

kriging coordinates or kriging indicators?

A

@ recall: #g = (- W-Jy, — invertible! Jg = % WA+ 31

@ proposition ensures that results for 7o are equivalent:
o cokriging indicators (jo) and transforming them
@ cokriging coordinates directly (7o)
@ if we apply kriged results to the basis used:
Bo=C (exp (W' #0) ) = (exp (5-10) )
@ always valid: positive, summing up to one
@ no W = choice of basis modifies nothing
@ wait to fix 8 (or a = 0.05) until the end
@ only for cokriging!
@ if cokriging is too complex?
© kriging j; individually
© combine them with 8
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application preliminaries estimation coordinates geostatistics probabilities

4. apply conventional geostatistics (ll)

kriging coordinates or kriging indicators?

A

@ recall: #g = (- W-Jy, — invertible! Jg = % WA+ 31

@ proposition ensures that results for 7o are equivalent:
o cokriging indicators (jo) and transforming them
@ cokriging coordinates directly (7o)
@ if we apply kriged results to the basis used:
Bo=C (exp (W' #0) ) = (exp (5-10) )
@ always valid: positive, summing up to one
@ no W = choice of basis modifies nothing
@ wait to fix 8 (or a = 0.05) until the end
@ only for cokriging!
@ if cokriging is too complex?
© kriging j; individually
© combine them with 8
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application preliminaries estimation coordinates geostatistics pr
5. extract probabilities for unsampled locations

results with o« = 0.05

@ information
measure:
kriging =
variance of £
J, scaled in
[0, 0.25]

@ information
measure:
Aitchison

norm ||folla £ °

scaled in
[0.5, 3]

Wi’i‘ IR AT
\ H HHMHH\HHH HHHH\H\“HHH\HHH

O e A
||H Hh il Hi M i h ““ 5 H“H"W i N

||||
| ULl 1

feb mar

J




conclusions

conclusions

simplicial Indicator Kriging (sIK)

@ distinguish J (multinomial) from p (its parameter)
@ geostatistics on the coordinates of p (as a composition)

@ easier modeling of covariance/variogram structures
9 yield always valid results (also individual kriging)

@ geostatistical procedure: not dependent on the preliminary p
estimation (3, a, matrix A)

@ final cokriging results: not dependent on the basis chosen
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simplicial Indicator Kriging (sIK)

@ distinguish J (multinomial) from p (its parameter)
@ geostatistics on the coordinates of p (as a composition)

@ easier modeling of covariance/variogram structures
9 yield always valid results (also individual kriging)

@ geostatistical procedure: not dependent on the preliminary p
estimation (3, a, matrix A)

@ final cokriging results: not dependent on the basis chosen

generalization: geostatistics for vector observations

@ |F sample space has an Euclidean structure, compatible with
data scale, THEN (geo)statistics can/should be applied to the
coordinates

@ results honour the space conditions (bounds: positive
components, constant sum) and are BLUE with respect to the
data scale (additive, multiplicative, etc.)
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conclusions

more material

further reading

@ Pawlowsky-Glahn, V., 2003. Statistical modelling on coordinates, in:
Compositional Data Analysis Workshop — CoDaWork’03, Proceedings

@ Tolosana-Delgado, R., 2006. Geostatistics for constrained variables:
positive data, compositions and probabilities. Application to
environmental hazard monitoring. Ph.D. thesis (U. Girona, Spain)

@ Tolosana-Delgado, R., Pawlowsky-Glahn, V., Egozcue, J. J. Indicator
kriging without order relation violations. Mathematical Geology

@ Tolosana-Delgado, R., Pawlowsky-Glahn, V., 2007. Kriging regionalized
positive variables revisited: sample space and scale considerations.
Mathematical Geology, in press

CoDaWork’'08

3" international workshop on Compositional Data Analysis, Girona
(Spain), May 27 to 30, 2008.
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water quality assessment: a particular case

the basin: geology

i metamorphic
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water quality assessment: a particular case

the basin: human presence

@ relatively high (a 17000 hab. town,

extensive urbanization)

@ chemical industry (metal, electronics)
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statistics for random vectors

the object way: use vectors + linear applications (Eaton, 1983)

@ E[Z]: expectation already defined if Z a real random variable
@ projections have real values, P,(z) = (z,u)a, with u a direction
@ Es[Z] = m a vector capturing all projections, E [Py(Z)] = Py(m)

@ Vars[Z] = X an endomorphism capturing all pairs of projections,
E[Pu(Zem) -Py(Zem)] =Py(xv)
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measures of information in a probability vector

entropy vs. Aitchison norm

@ Aitchison norm

1 2 P1 2 P2 2p1)
=4/=(lo +lo +log” —
lIplla \/3< g o 5 g

2 3 0%]

@ Shannon entropy

H = p1logp1 + p2 log p2 + ps log ps
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